Усилитель на TDA2030 с однополярным питанием — Поделки для авто



Часто при построении усилителя возникает проблема построения источника питания. Не всегда есть возможность купить или намотать трансформатор со средней точкой для двухполярного блока питания. В то же время можно найти готовый рабочий однополярный источник, например от старого оборудования или питать усилитель от бортовой сети автомобиля, катера и т.д. Кстати хочу сразу предложить отличный ресурс, где можно купить запчасти для вашего авто.

Для примера рассмотрим микросхему НЧ усилителя TDA2030. Она спроектирована для построения усилителей класса АВ. В тех. документации производителя показано типичное применение микросхемы с однополярным питанием.

Типичным для TDA2030 является выходная мощность 14Вт при питании 14В на 4 Ом-ной нагрузке (при коэффициенте искажений 0.5%). Максимальное значение однополярного питания 36В. TDA2030 имеет большой ток на выходе (до 3.5А), низкие значения перекрестных и гармонических искажений.

Кроме того, она имеет встроенную оригинальную (запатентованную) систему защиты от короткого замыкания, обеспечивающую автоматическое ограничение рассеиваемой мощности для того, чтобы сохранить рабочую точку выходных транзисторов в пределах области их безопасной работы. Также имеется типовая тепловая защита (отключение) при достижении 150?С.

Назначение каждого элемента на схеме и возможность изменения их номиналов показаны в таблице.

НоминалНазначениеПовышение номиналаСнижение  номинала
R1 150 кОмпетля замкнутой обратной связиусиление возрастетусиление уменьшится *
R2  4.7 кОмпетля замкнутой обратной связиусиление уменьшится *усиление возрастет
R3 100 кОмсмещение неинвертирующего входавходное сопротивление возрастет
входное сопротивление уменьшится
R41 Омстабилизация частотывозможна осцилляция на ВЧ при индуктивной нагрузке
RA/RB100 кОмсмещение неинвертирующего входа ухудшение ослабления ВЧрасход мощности
C11мкФразвязка по постоянному токуувеличивает частоту среза НЧ
C22мкФразвязка по постоянному токуувеличивает частоту среза НЧ
C30.1мкФфильтр питающего напряжениявозможна осцилляция
C5100мкФфильтр питающего напряжениявозможна осцилляция
C70.22мкФстабилизация частотывозможна осцилляция
CB 

~1/(2? B R1)

В — полоса пропускания

частота среза ВЧ

 

сужение полосы пропусканиярасширение полосы пропускания
D1,D21N4001защита от пиковых напряжений

* — петлевое усиление должно быть больше 24 дБ.

Печатная плата для приведенной схемы

TDA2030 следует установить на соответствующий радиатор. При однополярном питании не требуется электрическая изоляция между корпусом микросхемы и радиатором.

Печатка в формате .lay  скачать…

Похожие статьи:

xn----7sbgjfsnhxbk7a.xn--p1ai

Микросхема усилитель TDA2030. Подробное описание

Микросхема усилитель TDA2030 является достаточно популярной и дешевой микросхемой позволяющей построить качественный усилитель для бытовых нужд. Может работать как от двухполярного, так и однополярного источника питания.

TDA2030 является монолитной интегральной микросхемой в корпусе типа Pentawatt с пятью выводами.

Микросхема предназначена для изготовления низкочастотных усилителей звука класса AB. 

Усилитель класса «A» – является линейным, усиление совершается на линейном участке вольт-амперной характеристики. Достоинством является хорошее качество усиления и практически нет переходных искажений. К недостаткам можно отнести не экономичный в плане энергопотребления, отсюда низкий КПД.

Усилитель класса «В» – усиление происходит активными транзисторами, причем каждый работает в ключевом режиме, усиливая свою часть полуволны сигнала. У данного класса высокий КПД, но вместе с тем и уровень нелинейных искажений выше, по причине несовершенной стыковки обоих полуволн.

Усилитель класса «AB» – усредненный вариант. По причине начального смещения снижаются нелинейные искажения звукового сигнала («стыковка» приближена к совершенной), но происходит ухудшение в плане экономичности.

Микросхема  обеспечивает 14 ватт выходной мощности (d = 0,5%) при 14 В (двухполярном) или 28 В (однополярном) напряжении питания и  нагрузки в 4 Ом. А также обеспечивает гарантированную выходную мощность в 12/8 ватт при нагрузки 4/8 Ом.

TDA2030 создает высокий выходной ток и имеет очень низкие гармонические и перекрестные искажения. 

Гармонические колебания возникают из-за искажения формы напряжения от идеальной синусоиды. Это приводит к тому, что, помимо колебания первостепенной частоты (первой гармоники), в форме напряжения возникают колебания высших гармоник, которые и являются гармоническими искажениями.

Перекрестные искажения являются причиной нелинейной входной характеристики транзисторов, функционирующих в усилителях  режима «В».

Кроме того, TDA2030 включает в себя оригинальную и запатентованную систему защиты от короткого замыкания, состоящую из модуля автоматического ограничения рассеиваемой мощности для удержания рабочей точки выходных транзисторов в пределах их безопасного рабочего диапазона. Так же имеется типовая схема отключения по перегреву.

Технические характеристики TDA2030

Габаритные размеры и распиновка выводов микросхемы TDA2030

Типовая схема включения TDA2030 с выходной мощностью до 14 ватт

В качестве входного сигнала (приблизительно 0,8 вольт)  может выступать аудиосигнал  с выхода CD/DVD проигрывателя, радиоприемника, MP3 плеера. К выходу необходимо подключить громкоговоритель с сопротивлением катушки 4 Ом. Переменный резистор  Р1 предназначен для изменения величины входного аудиосигнала. Если необходимо усилить достаточно слабый сигнал, например, сигнал с микрофона или со звукоснимателя электрогитары, то в этом случае необходимо применить предварительный усилитель микрофона.

Предусилитель – усилитель слабого сигнала, расположенный, как правило, вблизи источника этого сигнала для предотвращения всевозможных искажений из-за различных наводок. Используется для усиления слаботочных сигналов с таких устройств как микрофоны, всевозможные звукосниматели.

Источник питания желательно собрать на отдельной плате от самого усилителя. Схема источника питания достаточно проста.

Выпрямительным трансформатором может быть любой трансформатор, обеспечивающий на вторичной обмотке напряжение около 20…22 вольт. Для нормальной работы усилителя, микросхему TDA2030 желательно установить на теплоотвод. В качестве, которого вполне подойдет небольшая алюминиевая пластина толщиной около 3 мм с общей площадью поверхности приблизительно 15 кв. см. Собранный без ошибок усилитель в наладке не нуждается и начинает работать сразу.

Мостовая схема включения TDA2030

В случае если необходимо получить более мощное усиление звука, то можно собрать усилитель по мостовой схеме подключения TDA2030

Акустический сигнал с выхода микросхемы DA1 поступает сквозь делитель на резисторах R5, R8 на инвертирующий вход микросхемы DA2. Это позволяет работать в противоположной фазе. В связи с чем увеличивается напряжение на нагрузке, и, следовательно усиливается мощность на выходе. При напряжении питания 16 В и сопротивлении нагрузки 4 Ом выходная мощность может составить 32 Вт.

Скачать datasheet TDA2030 (1,3 Mb, скачано: 5 598)

www.joyta.ru

Усилитель на TDA2030A | Практическая электроника

Усилитель на TDA2030 является самым простым и качественным усилителем, который может повторить даже школьник.

В настоящее время, для того, чтобы собрать простейший и более-менее качественный усилитель звука, нам уже не надо выбирать транзисторы и мучатся с расчетами. В наш век бурного рассвета электроники достаточно зайти в любой радиомагазин или на Алиэкпресс, купить микросхему, присоединить к ней несколько радиоэлементов по типичной схеме включения и вуаля! Усилитель готов!

Так мы и поступим. В роли микросхемы усилителя в этой статье мы возьмем микросхему TDA2030A, которую можно купить абсолютно в любом радиомагазине по цене не дороже, чем буханка черного хлеба.

Итак, пару слов об этой микросхеме. TDA2030А — это микросхема, которая исполняется в корпусе  Pentawatt (корпус с пятью выводами для мощных линейных интегральных схем). Используется в основном как усилитель низкой частоты (УНЧ) в классе усиления AB. Максимальное напряжение однополярного питания составляет 44 Вольта. Вряд ли вы найдете такое напряжение в своей домашней лаборатории, поэтому использование этой микросхемы вполне подойдет для ваших электронных безделушек без вреда спалить микросхему. Также TDA2030A имеет большой выходной ток вплоть до пикового 3,5 Ампер и имеет низкие гармонические и перекрестные искажения. Это значит, что усилитель, собранный на этой микросхеме, будет иметь очень даже неплохое звучание. Кроме того, микросхема включает в себя защиту от короткого замыкания и автоматически ограничивает рассеиваемую мощность. Также включена защита от перегрева, при которой микросхема автоматически отключается при высоком нагреве корпуса.

P.S. Так как в основном рынок захлестнули китайские TDAшки, не исключено, что эти защиты могут сработать не так, как надо, а могут не сработать вообще. Поэтому, не рекомендую проверять их на КЗ и на перегрев.

Самая простая и типичная схема включения TDA2030A в режиме УНЧ будет выглядеть так:

Как вы видите, ничего сложного здесь нет. При сборке схемы не забывайте про электролитические конденсаторы, которые имеют полярность, а также максимальное напряжение. Как вы помните, оно не должно превышать +Uпит. +Uпит в этой схеме можно брать от 12 и до 44 Вольт.

На Алиэкпрессе есть даже готовый упрощенный вариант этой схемы:

Его можете посмотреть по этой ссылке.

Если есть желание, то можно собрать схему с парой комплементарных транзисторов, тем самым увеличив выходную мощность. Другими словами,  ваш динамик будет орать еще громче, если он, конечно, будет рассчитан на такую мощность. Схема ничуть не сложнее, чем предыдущая:

Если не найдете зарубежные транзисторы BD907 и BD908, то их можно заменить на отечественные аналоги КТ819 и КТ818 соответственно.

Я уже давненько собирал эти схемы и убедился в их работоспособности. Хотя мне наступил медведь на ухо, но могу сказать, что по качеству звучания такие усилители нисколько не уступают каким-нибудь Hi-Fi навороченным усилкам. Вполне пойдет для какой-либо комнатушки, либо среднего размера гаража, чтобы потусить под любимые треки. Достаточно сделать переходник и  подключить мобильный телефон, как источник музыкального сигнала.

Все выше предложенные схемы усиливают только один канал. Для усиления стереосигнала нам потребуется сделать еще один такой же усилитель. Также не забывайте про радиаторы, так как на высокой мощности микросхема нехило греется.

Все эти схемы вы можете найти в даташите на микросхему. Даташит можете скачать по этой ссылке, либо без проблем найти в интернете.

www.ruselectronic.com

Усилитель на TDA2030 с однополярным питанием — Поделки для авто



Часто при построении усилителя возникает проблема построения источника питания. Не всегда есть возможность купить или намотать трансформатор со средней точкой для двухполярного блока питания. В то же время можно найти готовый рабочий однополярный источник, например от старого оборудования или питать усилитель от бортовой сети автомобиля, катера и т.д. Кстати хочу сразу предложить отличный ресурс, где можно купить запчасти для вашего авто.

Для примера рассмотрим микросхему НЧ усилителя TDA2030. Она спроектирована для построения усилителей класса АВ. В тех. документации производителя показано типичное применение микросхемы с однополярным питанием.

Типичным для TDA2030 является выходная мощность 14Вт при питании 14В на 4 Ом-ной нагрузке (при коэффициенте искажений 0.5%). Максимальное значение однополярного питания 36В. TDA2030 имеет большой ток на выходе (до 3.5А), низкие значения перекрестных и гармонических искажений.

Кроме того, она имеет встроенную оригинальную (запатентованную) систему защиты от короткого замыкания, обеспечивающую автоматическое ограничение рассеиваемой мощности для того, чтобы сохранить рабочую точку выходных транзисторов в пределах области их безопасной работы. Также имеется типовая тепловая защита (отключение) при достижении 150?С.

Назначение каждого элемента на схеме и возможность изменения их номиналов показаны в таблице.

НоминалНазначениеПовышение номиналаСнижение  номинала
R1 150 кОмпетля замкнутой обратной связиусиление возрастетусиление уменьшится *
R2  4.7 кОмпетля замкнутой обратной связиусиление уменьшится *усиление возрастет
R3 100 кОмсмещение неинвертирующего входавходное сопротивление возрастетвходное сопротивление уменьшится
R41 Омстабилизация частотывозможна осцилляция на ВЧ при индуктивной нагрузке
RA/RB100 кОмсмещение неинвертирующего входа ухудшение ослабления ВЧрасход мощности
C11мкФразвязка по постоянному токуувеличивает частоту среза НЧ
C22мкФразвязка по постоянному токуувеличивает частоту среза НЧ
C30.1мкФфильтр питающего напряжениявозможна осцилляция
C5100мкФфильтр питающего напряжениявозможна осцилляция
C70.22мкФстабилизация частотывозможна осцилляция
CB 

~1/(2? B R1)

В — полоса пропускания

частота среза ВЧ

 

сужение полосы пропусканиярасширение полосы пропускания
D1,D21N4001защита от пиковых напряжений

* — петлевое усиление должно быть больше 24 дБ.

Печатная плата для приведенной схемы

TDA2030 следует установить на соответствующий радиатор. При однополярном питании не требуется электрическая изоляция между корпусом микросхемы и радиатором.

Печатка в формате .lay  скачать…

Похожие статьи:

xn----7sbgjfsnhxbk7a.xn--p1ai

Делаем усилитель на TDA2030 с однополярным питанием

Часто при построении усилителя возникает проблема построения источника питания. Не всегда есть возможность купить или намотать трансформатор со средней точкой для двухполярного блока питания. В то же время можно найти готовый рабочий однополярный источник, например от старого оборудования или питать усилитель от бортовой сети автомобиля, катера и т.д. Кстати хочу сразу предложить отличный ресурс, где можно купить запчасти для вашего авто.

Для примера рассмотрим микросхему НЧ усилителя TDA2030. Она спроектирована для построения усилителей класса АВ. В тех. документации производителя показано типичное применение микросхемы с однополярным питанием.

Типичным для TDA2030 является выходная мощность 14Вт при питании 14В на 4 Ом-ной нагрузке (при коэффициенте искажений 0.5%). Максимальное значение однополярного питания 36В. TDA2030 имеет большой ток на выходе (до 3.5А), низкие значения перекрестных и гармонических искажений.

Кроме того, она имеет встроенную оригинальную (запатентованную) систему защиты от короткого замыкания, обеспечивающую автоматическое ограничение рассеиваемой мощности для того, чтобы сохранить рабочую точку выходных транзисторов в пределах области их безопасной работы. Также имеется типовая тепловая защита (отключение) при достижении 150?С.

Назначение каждого элемента на схеме и возможность изменения их номиналов показаны в таблице.

НоминалНазначениеПовышение номиналаСнижение  номинала
R1 150 кОмпетля замкнутой обратной связиусиление возрастетусиление уменьшится *
R2  4.7 кОмпетля замкнутой обратной связиусиление уменьшится *усиление возрастет
R3 100 кОмсмещение неинвертирующего входавходное сопротивление возрастетвходное сопротивление уменьшится
R41 Омстабилизация частотывозможна осцилляция на ВЧ при индуктивной нагрузке
RA/RB100 кОмсмещение неинвертирующего входа ухудшение ослабления ВЧрасход мощности
C11мкФразвязка по постоянному токуувеличивает частоту среза НЧ
C22мкФразвязка по постоянному токуувеличивает частоту среза НЧ
C30.1мкФфильтр питающего напряжениявозможна осцилляция
C5100мкФфильтр питающего напряжениявозможна осцилляция
C70.22мкФстабилизация частотывозможна осцилляция
CB~1/(2? B R1)

В — полоса пропускания

частота среза ВЧсужение полосы пропусканиярасширение полосы пропускания
D1,D21N4001защита от пиковых напряжений

* — петлевое усиление должно быть больше 24 дБ.

Печатная плата для приведенной схемы

TDA2030 следует установить на соответствующий радиатор. При однополярном питании не требуется электрическая изоляция между корпусом микросхемы и радиатором.

Печатка в формате .lay  скачать…

 

avto-pudel.ru

Возможности TDA2030 (от усилителя до блока питания) – ldsound.ru

Микросхема усилителя НЧ TDA2030A фирмы ST Microelectronics пользуется заслуженной популярностью среди радиолюбителей. Она обладает высокими электрическими характеристиками и низкой стоимостью, что позволяет при минимальных затратах собирать на ней высококачественные УНЧ мощностью до 18 Вт. Однако не все знают о ее “скрытых достоинствах”: оказывается, на этой ИМС можно собрать ряд других полезных устройств. Микросхема TDA2030A представляет собой 18 Вт Hi-Fi усилитель мощности класса АВ или драйвер для УНЧ мощностью до 35 Вт (с мощными внешними транзисторами). Она обеспечивает большой выходной ток, имеет малые гармонические и интермодуляционные искажения, широкую полосу частот усиливаемого сигнала, очень малый уровень собственных шумов, встроенную защиту от короткого замыкания выхода, автоматическую систему ограничения рассеиваемой мощности, удерживающую рабочую точку выходных транзисторов ИМС в безопасной области. Встроенная термозащита обеспечивает выключение ИМС при нагреве кристалла выше 145°С. Микросхема выполнена в корпусе Pentawatt и имеет 5 выводов. Вначале вкратце рассмотрим несколько схем стандартного применения ИМС – усилителей НЧ. Типовая схема включения TDA2030A показана на рис.1.

 

Микросхема включена по схеме неинвертирующего усилителя. Коэффициент усиления определяется соотношением сопротивлений резисторов R2 и R3, образующих цепь ООС. Вычисляется он по формуле Gv=1+R3/R2 и может быть легко изменен подбором сопротивления одного из резисторов. Обычно это делают с помощью резистора R2. Как видно из формулы, уменьшение сопротивления этого резистора вызовет увеличение коэффициента усиления (чувствительности) УНЧ. Емкость конденсатора С2 выбирают исходя из того, чтобы его емкостное сопротивление Хс=1 /2?fС на низшей рабочей частоте было меньше R2 по крайней мере в 5 раз. В данном случае на частоте 40 Гц Хс2=1/6,28*40*47*10-6=85 Ом. Входное сопротивление определяется резистором R1. В качестве VD1, VD2 можно применить любые кремниевые диоды с током IПР0,5… 1 А и UОБР более 100 В, например КД209, КД226, 1N4007. Схема включения ИМС в случае использования однополярного источника питания показана на рис.2.

 

Делитель R1R2 и резистор R3 образуют цепь смещения для получения на выходе ИМС (вывод 4) напряжения, равного половине питающего. Это необходимо для симметричного усиления обеих полуволн входного сигнала. Параметры этой схемы при Vs=+36 В соответствуют параметрам схемы, показанной на рис.1, при питании от источника ±18 В. Пример использования микросхемы в качестве драйвера для УНЧ с мощными внешними транзисторами показан на рис.3.

 

При Vs=±18 В на нагрузке 4 Ом усилитель развивает мощность 35 Вт. В цепи питания ИМС включены резисторы R3 и R4, падение напряжения на которых является открывающим для транзисторов VT1 и VT2 соответственно. При малой выходной мощности (входном напряжении) ток, потребляемый ИМС, невелик, и падения напряжения на резисторах R3 и R4 недостаточно для открывания транзисторов VT1 и VT2. Работают внутренние транзисторы микросхемы. По мере роста входного напряжения увеличивается выходная мощность и потребляемый ИМС ток. При достижении им величины 0,3…0,4 А падение напряжения на резисторах R3 и R4 составит 0,45…0,6 В. Начнут открываться транзисторы VT1 и VT2, при этом они окажутся включенными параллельно внутренним транзисторам ИМС. Возрастет ток, отдаваемый в нагрузку, и соответственно увеличится выходная мощность. В качестве VT1 и VT2 можно применить любую пару комплементарных транзисторов соответствующей мощности, например КТ818, КТ819. Мостовая схема включения ИМС показана на рис.4.

 

Сигнал с выхода ИМС DA1 подается через делитель R6R8 на инвертирующий вход DA2, что обеспечивает работу микросхем в противофазе. При этом возрастает напряжение на нагрузке, и, как следствие, увеличивается выходная мощность. При Vs=±16 В на нагрузке 4 Ом выходная мощность достигает 32 Вт. Для любителей двух-, трехполосных УНЧ данная ИМС – идеальный вариант, ведь непосредственно на ней можно собирать активные ФНЧ и ФВЧ. Схема трехполосного УНЧ показана на рис.5.

 

Низкочастотный канал (НЧ) выполнен по схеме с мощными выходными транзисторами. На входе ИМС DA1 включен ФНЧ R3C4, R4C5, причем первое звено ФНЧ R3C4 включено в цепь ООС усилителя. Такое схемное решение позволяет простыми средствами (без увеличения числа звеньев) получать достаточно высокую крутизну спада АЧХ фильтра. Среднечастотный (СЧ) и высокочастотный (ВЧ) каналы усилителя собраны по типовой схеме на ИМС DA2 и DA3 соответственно. На входе СЧ канала включены ФВЧ C12R13, C13R14 и ФНЧ R11C14, R12C15, которые вместе обеспечивают полосу пропускания 300…5000 Гц. Фильтр ВЧ канала собран на элементах C20R19, C21R20. Частоту среза каждого звена ФНЧ или ФВЧ можно вычислить по формуле fСР=160/RC, где частота f выражена в герцах, R – в килоомах, С – в микрофарадах. Приведенные примеры не исчерпывают возможностей применения ИMC TDA2030A в качестве усилителей НЧ. Так, например, вместо двухполярного питания микросхемы (рис.3,4) можно использовать однополярное питание. Для этого минус источника питания следует заземлить, на неинвертирующий (вывод 1) вход подать смещение, как показано на рис.2 (элементы R1-R3 и С2). Наконец, на выходе ИМС между выводом 4 и нагрузкой необходимо включить электролитический конденсатор, а блокировочные конденсаторы по цепи -Vs из схемы исключить.

Рассмотрим другие возможные варианты использования этой микросхемы. ИМС TDA2030A представляет собой не что иное, как операционный усилитель с мощным выходным каскадом и весьма неплохими характеристиками. Основываясь на этом, были спроектированы и опробованы несколько схем нестандартного ее включения. Часть схем была опробована “в живую”, на макетной плате, часть – смоделирована в программе Electronic Workbench.

 

Мощный повторитель сигнала:

 

 

Сигнал на выходе устройства рис.6 повторяет по форме и амплитуде входной, но имеет большую мощность, т.е. схема может работать на низкоомную нагрузку. Повторитель может быть использован, например, для умощнения источников питания, увеличения выходной мощности низкочастотных генераторов (чтобы можно было непосредственно испытывать головки громкоговорителей или акустические системы). Полоса рабочих частот повторителя линейна от постоянного тока до 0,5… 1 МГц, что более чем достаточно для генератора НЧ.

 

Умощнение источников питания:

                      

 

Микросхема включена как повторитель сигнала, выходное напряжение (вывод 4) равно входному (вывод 1), а выходной ток может достигать значения 3,5 А. Благодаря встроенной защите схема не боится коротких замыканий в нагрузке. Стабильность выходного напряжения определяется стабильностью опорного, т.е. стабилитрона VD1 рис.7 и интегрального стабилизатора DA1 рис.8. Естественно, по схемам, показанным на рис.7 и рис.8, можно собрать стабилизаторы и на другое напряжение, нужно лишь учитывать, что суммарная (полная) мощность, рассеиваемая микросхемой, не должна превышать 20 Вт. Например, нужно построить стабилизатор на 12 В и ток 3 А. В наличии есть готовый источник питания (трансформатор, выпрямитель и фильтрующий конденсатор), который выдает UИП= 22 В при необходимом токе нагрузки. Тогда на микросхеме происходит падение напряжения UИМС= UИП – UВЫХ = 22 В -12 В = 10В, и при токе нагрузки 3 А рассеиваемая мощность достигнет величины РРАС= UИМС*IН = 10В*3А = 30 Вт, что превышает максимально допустимое значение для TDA2030A. Максимально допустимое падение напряжения на ИМС может быть рассчитано по формуле: UИМС= РРАС.МАХ / IН.

В нашем примере UИМС= 20 Вт / 3 А = 6,6 В, следовательно максимальное напряжение выпрямителя должно составлять UИП = UВЫХ+UИМС = 12В + 6,6 В =18,6 В. В трансформаторе количество витков вторичной обмотки придется уменьшить. Сопротивление балластного резистора R1 в схеме, показанной на рис.7, можно посчитать по формуле: R1 = ( UИП – UСТ)/IСТ, где UСТ и IСТ – соответственно напряжение и ток стабилизации стабилитрона. Пределы тока стабилизации можно узнать из справочника, на практике для маломощных стабилитронов его выбирают в пределах 7…15 мА (обычно 10 мА). Если ток в вышеприведенной формуле выразить в миллиамперах, то величину сопротивления получим в килоомах.

 

Простой лабораторный блок питания:

 

Электрическая схема блока питания показана на рис.9. Изменяя напряжение на входе ИМС с помощью потенциометра R1, получают плавно регулируемое выходное напряжение. Максимальный ток, отдаваемый микросхемой, зависит от выходного напряжения и ограничен все той же максимальной рассеиваемой мощностью на ИМС. Рассчитать его можно по формуле:

IМАХ = РРАС.МАХ / UИМС

Например, если на выходе выставлено напряжение UВЫХ = 6 В, на микросхеме происходит падение напряжения UИМС = UИП – UВЫХ = 36 В – 6 В = 30 В, следовательно, максимальный ток составит IМАХ = 20 Вт / 30 В = 0,66 А. При UВЫХ = 30 В максимальный ток может достигать максимума в 3,5 А, так как падение напряжения на ИМС незначительно (6 В).

 

Стабилизированный лабораторный блок питания:

 

Электрическая схема блока питания показана на рис.10. Источник стабилизированного опорного напряжения – микросхема DA1 – питается от параметрического стабилизатора на 15 В, собранного на стабилитроне VD1 и резисторе R1. Если ИМС DA1 питать непосредственно от источника +36 В, она может выйти из строя (максимальное входное напряжение для ИМС 7805 составляет 35 В). ИМС DA2 включена по схеме неинвертирующего усилителя, коэффициент усиления которого определяется как 1+R4/R2 и равен 6. Следовательно, выходное напряжение при регулировке потенциометром R3 может принимать значение практически от нуля до 5 В * 6=30 В. Что касается максимального выходного тока, для этой схемы справедливо все вышесказанное для простого лабораторного блока питания (рис.9). Если предполагается меньшее регулируемое выходное напряжение (например, от 0 до 20 В при UИП = 24 В), элементы VD1, С1 из схемы можно исключить, а вместо R1 установить перемычку. При необходимости максимальное выходное напряжение можно изменить подбором сопротивления резистора R2 или R4.

 

Регулируемый источник тока:

 

Электрическая схема стабилизатора показана на рис.11. На инвертирующем входе ИМС DA2 (вывод 2), благодаря наличию ООС через сопротивление нагрузки, поддерживается напряжение UBX. Под действием этого напряжения через нагрузку протекает ток IН = UBX / R4. Как видно из формулы, ток нагрузки не зависит от сопротивления нагрузки (разумеется, до определенных пределов, обусловленных конечным напряжением питания ИМС). Следовательно, изменяя UBX от нуля до 5 В с помощью потенциометра R1, при фиксированном значении сопротивления R4=10 Ом, можно регулировать ток через нагрузку в пределах 0…0,5 А. Данное устройство может быть использовано для зарядки аккумуляторов и гальванических элементов. Зарядный ток стабилен на протяжении всего цикла зарядки и не зависит от степени разряженности аккумулятора или от нестабильности питающей сети. Максимальный зарядный ток, выставляемый с помощью потенциометра R1, можно изменить, увеличивая или уменьшая сопротивление резистора R4. Например, при R4=20 Ом он имеет значение 250 мА, а при R4=2 Ом достигает 2,5 А (см. формулу выше). Для данной схемы справедливы ограничения по максимальному выходному току, как для схем стабилизаторов напряжения. Еще одно применение мощного стабилизатора тока – измерение малых сопротивлений с помощью вольтметра по линейной шкале. Действительно, если выставить значение тока, например, 1 А, то, подключив к схеме резистор сопротивлением 3 Ом, по закону Ома получим падение напряжения на нем U=l*R=l А*3 Ом=3 В, а подключив, скажем, резистор сопротивлением 7,5 Ом, получим падение напряжения 7,5 В. Конечно, на таком токе можно измерять только мощные низкоомные резисторы (3 В на 1 А – это 3 Вт, 7,5 В*1 А=7,5 Вт), однако можно уменьшить измеряемый ток и использовать вольтметр с меньшим пределом измерения.

 

Мощный генератор прямоугольных импульсов:

        

 

Схемы мощного генератора прямоугольных импульсов показаны на рис.12 (с двухполярным питанием) и рис.13 (с однополярным питанием). Схемы могут быть использованы, например, в устройствах охранной сигнализации. Микросхема включена как триггер Шмитта, а вся схема представляет собой классический релаксационный RC-генератор. Рассмотрим работу схемы, показанной на рис. 12. Допустим, в момент включения питания выходной сигнал ИМС переходит на уровень положительного насыщения (UВЫХ = +UИП). Конденсатор С1 начинает заряжаться через резистор R3 с постоянной времени Cl R3. Когда напряжение на С1 достигнет половины напряжения положительного источника питания (+UИП/2), ИМС DA1 переключится в состояние отрицательного насыщения (UВЫХ = -UИП). Конденсатор С1 начнет разряжаться через резистор R3 с той же постоянной времени Cl R3 до напряжения (-UИП / 2), когда ИМС снова переключится в состояние положительного насыщения. Цикл будет повторяться с периодом 2,2C1R3, независимо от напряжения источника питания. Частоту следования импульсов можно посчитать по формуле:

f=l/2,2*R3Cl.

Если сопротивление выразить в килоомах, а емкость в микрофарадах, то частоту получим в килогерцах.

 

Мощный низкочастотный генератор синусоидальных колебаний:

 

Электрическая схема мощного низкочастотного генератора синусоидальных колебаний показана на рис.14. Генератор собран по схеме моста Вина, образованного элементами DA1 и С1, R2, С2, R4, обеспечивающими необходимый фазовый сдвиг в цепи ПОС. Коэффициент усиления по напряжению ИМС при одинаковых значениях Cl, C2 и R2, R4 должен быть точно равен 3. При меньшем значении Ку колебания затухают, при большем – резко возрастают искажения выходного сигнала. Коэффициент усиления по напряжению определяется сопротивлением нитей накала ламп ELI, EL2 и резисторов Rl, R3 и равен Ky = R3 / Rl + REL1,2. Лампы ELI, EL2 работают в качестве элементов с переменным сопротивлением в цепи ООС. При увеличении выходного напряжения сопротивление нитей накала ламп за счет нагревания увеличивается, что вызывает уменьшение коэффициента усиления DA1. Таким образом, стабилизируется амплитуда выходного сигнала генератора, и сводятся к минимуму искажения формы синусоидального сигнала. Минимума искажений при максимально возможной амплитуде выходного сигнала добиваются с помощью подстроечного резистора R1. Для исключения влияния нагрузки на частоту и амплитуду выходного сигнала на выходе генератора включена цепь R5C3, Частота генерируемых колебаний может быть определена по формуле:

f=1/2piRC.

Генератор может быть использован, например, при ремонте и проверке головок громкоговорителей или акустических систем.

В заключение необходимо отметить, что микросхему нужно установить на радиатор с площадью охлаждаемой поверхности не менее 200 см2. При разводке проводников печатной платы для усилителей НЧ необходимо проследить, чтобы “земляные” шины для входного сигнала, а также источника питания и выходного сигнала подводились с разных сторон (проводники к этим клеммам не должны быть продолжением друг друга, а соединяться вместе в виде “звезды”). Это необходимо для минимизации фона переменного тока и устранения возможного самовозбуждения усилителя при выходной мощности, близкой к максимальной.

 

По материалам из журнала “Радіоаматор”

ldsound.ru

Три простых схемы усилителей на TDA2030

Для начинающих радиолюбителей представлены ниже три простые схемы усилителей на микросхеме TDA2030H,V.

Их можно использовать для компьютера, в качестве сабвуфера, DVD проигрывателя и других устройств.

Схема первого усилителя с однополярным питанием (+V ) от 12 до 36В.

Печатная плата усилителя.

Второй вариант усилителя с двухполярным питанием V+/- до 18В.

Печатная плата усилителя

Схема третьего усилителя с увеличенной мощностью на двух микросхемах, включенных на встречу друг другу.

Во всех вариантах микросхемы должны быть установлены на радиатор!

Наименование выводов микросхемы TDA2030

Основные характеристики TDA2030

Использованы материалы Datasheet TDA2030

P.S. Эту схему и других простых усилителей Вы можете обсудить на нашем ФОРУМЕ

Есть в продаже наборы для самостоятельной сборки усилителя на TDA2030 в нашем магазине.




П О П У Л Я Р Н О Е:

  • Усилитель НЧ на TDA7056 своими руками
  • Усилитель на ТDА7056 построен по мостовой схеме, поэтому позволяет усиливать полный сигнал переменного тока, произведенным на нагрузке (громкоговорителе) без трансформатора или симметричного электропитания. TDA7056 — выходной низкочастотный моноусилитель средней мощности. Его можно использовать для усиления аудиосигнала с телефона, компьютера, плеера и т.д.

    Подробнее…

  • Активная акустическая система.
  • Всем хороши минимузыкальные центры,  и широкий набор функциональных возможнос­тей, и неплохие характеристики, мало места занимают в квартире. Одно плохо, — выходная мощность невысокая, обычно не более 5-10W. Конечно, можно купить более мощный аппарат, но музыкальный центр с выходной мощностью около 100W стоит на порядок дороже. А это существенно для кармана многих наших граждан. Подробнее…

  • Доработка усилителя «Радиотехника У-101-стерео»
  • У многих со времен СССР остались усилители мощности «Радиотехника У-101-стерео». В статье, ниже рассмотрены его схема, характеристики и доработки.

    МЗЧ с малыми нелинейными искажениями

    Основные технические характеристики:

    • Номинальная выходная мощность на нагрузке 8 Ом, Вт … 25
    • Коэффициент гармоник, %, не более ……………….. 0,003
    • Скорость нарастания выходного напряжения , В/мкс …. не менее 40
    • Номинальное входное напряжение, В ……………….. 0,7 Подробнее…

>>

ПОДЕЛИТЕСЬ С ДРУЗЬЯМИ:



Популярность: 63 722 просм.

www.mastervintik.ru

alexxlab

Отправить ответ

avatar
  Подписаться  
Уведомление о