Самый популярный советский осциллограф. Часть 2 – первая копия


Часть 1

В СССР следили за новинками зарубежной техники и копировали наиболее удачные экземпляры. Популярный американский осциллограф Tektronix 453 привлек внимание отечественных приборостроителей и было решено сделать советскую копию.

Тут надо сделать отступление и рассказать о советской приборостроительной отрасли вообще и осциллографостроении в частности. В отличие от США, где конструкторские бюро всегда входили в состав фирм-производителей, в СССР проектировщики существовали более-менее отдельно в виде НИИ, а разработанное изделие потом внедрялось в производство на заводе. Кроме того, практически все НИИ по разработке измерительных проборов, а также заводы по их выпуску относились к военно-промышленному комплексу и, в том числе, делали оборудование для министерств общего машиностроения (ракетчики) и среднего машиностроения (атомщики). 90% разработок курировалось военными заказчиками, хотя непосредственно военными финансировалась примерно четверть всех работ, остальное предназначалось для промышленности, НИИ и т.д. Все это вместе сильно затрудняет поиск информации по измерительным приборам – когда и где разработаны, когда и в каком количестве выпускались. Часто в документации на прибор производитель был не указан вообще, могла быть только вклеенная бумажка: по претензиям обращаться город такой-то, п/я такой-то. Единственным простым указанием на производителя был логотип завода-изготовителя на передней панели прибора (если он был проставлен, так как даже размещали его не всегда).


Осциллографами в СССР в основном занимались четыре НИИ:
– Вильнюсский научно-исследовательский институт радиоизмерительных приборов (ВНИИРТИ), исходно НИИ-555 при заводе 555. Он был основан в 1949 году, хотя разработкой осциллографов – первым в СССР – начал заниматься раньше, до выделения из состава завода. Первый осциллограф (С1-1) был выпущен заводом в 1948 году.
– Львовский научно-исследовательский радиотехнический институт (ЛНИРТИ), основан в 1956 году как СКБ 125-го завода. Первой разработкой был осциллограф С1-13 (1959 год). Специализировался на малогабаритных осциллографах для жестких условий эксплуатации.
– Горьковский научно-исследовательский приборостроительный институт (ГНИПИ), исходно НИИ-11, ныне ННИПИ. Основан в 1949 году, но осциллографами стал заниматься позже. Специализировался на широкополосных и стробоскопических осциллографах. С 1956 года был головным предприятием по разработке измерительных приборов.
– Минский научно-исследовательский приборостроительный институт (МНИПИ), основан в 1954 году, осциллографами стал заниматься существенно позже, примерно в начале 70-х годов.
Конечно, все НИИ разрабатывали самые разные типы измерительных приборов и осциллографы были только одним из направлений. Кроме того, были и другие разработчики, например, отдельные модели создавались в ОКБ при заводах.

Заводов было много, не один десяток, хотя нередко разработка передавалась НИИ на “свой” завод. У ВНИИРТИ это был Вильнюсский завод радиоизмерительных приборов (ВЗРИП), исходно завод 555, основанный в 1946 году. Именно на нем впервые в СССР был налажен выпуск осциллографов. У ЛНИРТИ – Львовское объединение радиотехнической аппаратуры (ЛОРТА), исходно “Измеритель”, завод 125, оно занималось радиотехнической аппаратурой с 1956 года. Конкретно осциллографы большей частью выпускал Червоноградский завод радиоаппаратуры, входящий в ЛОРТА. У МНИПИ “своим” заводом был Минский приборостроительный завод, основанный еще до войны и занимавшийся измерительными приборами с 1950 года. В 1971 году на его базе создали Минское производственное объединение (МПО) имени Ленина, ныне “Белвар”. Кроме того, осциллографы в немалом количестве производились и на Минском заводе “Калибр”, который был основан в 1948 году как патефонный, а в 1962 году переименован в “Радиоприбор”, после чего на нем стали выпускать измерительные приборы.

Законодателями на рынке осциллографов долгое время были американцы. Основатели фирмы Tektronix, Говард Вольюм и Джек Мердок, изобрели систему синхронизации, позволяющую получить на экране устойчивую картинку, также они впервые наложили на экран калиброванную сетку, благодаря чему осциллограф стал полноценным измерительным прибором. Поэтому не удивительно, что именно Tektronix оказалась одним из ведущих мировых производителей осциллографов. В 60-х годах заметным игроком стала фирма Hewlett-Packard, но к 70-м годам Tektronix вновь вырвалась вперед. Так, в 70-е годы на 70% всех производимых в мире осциллографов стояла эмблема Tektronix. Другие производители оказались в роли догоняющих, копируя удачные технические решения. Разработчики осциллографов в СССР, конечно, исключением не были.

Первой моделью разработки львовского ЛНИРТИ по тематике портативных осциллографов был С1-35 (1965-1966 годы) – копия Tektronix 321 (выпускался с 1960 до 1972 год с модификациями; один из первых в мире портативных транзисторных осциллографов). Копия получилась достаточно качественная, параметры (в т.ч. полоса 5 МГц) повторяли оригинал. Конструктив был аналогичный, как и всякие особенности, включая возможность работы от низковольтового источника постоянно тока (батарей). Правда, по дизайну C1-35 уступал Tektronix 321. Кстати, около 1972 года вместо С1-35 стали выпускать С1-49 с практически такими же параметрами и в таком же корпусе.

Вверху Tektronix 321 в первом и обновленном вариантах, ниже С1-35 и С1-49.

[отсюда]


[отсюда] и [отсюда]

Так вот, в СССР не могли пройти мимо очень удачной модели, каковой оказался Tektronix 453, и ЛНИРТИ взялся за его воспроизведение. Модель получила обозначение С1-64. Конструктив был повторен практически один в один – та же рама с быстросъемными крышками, закрывающий переднюю панель кожух на защелках, пропорции экрана, ручка для переноски с фиксированными положениями, дизайн органов управления, регулировки на правой боковой стенке. Даже цвет был такой же, серовато-синий! Схемотехника также была скопирована, включая входные каскады на нувисторах. Также в наличии был и вентилятор на задней стенке. Характеристики, правда, получились чуть хуже – полоса 40 МГц, масса 19 кг, потребляемая мощность 150 Вт (у оригинала 52.5 МГц, 13.2 кг и 100 Вт соответственно). Хотя, как говорят, реальные характеристики оказывались существенно лучше, так как указанные в ТТХ параметры были даны с большим запасом. Также наверняка была разница в характеристиках между приборами с обычной гражданской и военной приемкой. По крайней мере некоторые экземпляры имели реальную полосу более 100 МГц.


[отсюда]

Принцип открытия корпуса аналогичен Tektronix, также на правой стороне корпуса присутствуют разъемы и регулировки.

[отсюда]

Вид сзади. Питание подается через круглый разъем типа 2РМ, часто применяемый в военной технике. Как и у оригинала Tektronix, присутствует вентилятор. Ножки в виде катушек для намотки шнура.

[отсюда]

Внутренняя компоновка также аналогична оригиналу.

[отсюда]

Внешний вид С1-64 в деталях немного отличался от оригинала Tektronix, например, у Tek 453 верхняя и нижняя крышки корпуса были несимметричные (у С1-64 – симметричные), защелки на ручках у Tek 453 круглые (у С1-64 – прямоугольные), кроме того, несколько различалось расположение кнопок и ручек, хотя дизайн самих органов управления был очень похож. Также у Tek 453 крышка на переднюю панель имела отсек для щупов, тогда как у С1-64 его не было. Но общего, тем не менее, очень много.
Вверху Tektronix 453, внизу С1-64.


[отсюда]


[отсюда]

Точную дату разработки и начала производства найти не удалось, но это было в начале 70-х годов, во всяком случае выпуск был налажен не позднее 1971 года. Производился осциллограф на Червоноградском заводе ЛОРТА.
В конце 70-х – начале 80-х годов осциллограф был модернизирован и получил обозначение С1-64А. Отличия от С1-64 были фактически те же, что и между Tektronix 453 и 453A: нувисторы заменены на полевые транзисторы, увеличен размер экрана. В таком виде ЛОРТА выпускала осциллограф до конца 80-х годов.


[отсюда]

На отечественные осциллографы часто ставился счетчик времени наработки, справа с горизонтальной шкалой именно он.

[отсюда]

Tektronix 454, имевший полосу частот 150 МГц, также не остался без внимания, и в 70-х годах была предпринята попытка не то скопировать его, не то увеличить полосу С1-64 своими силами. Осциллограф получил обозначение С1-71, имел полосу 100 МГц и время переходной характеристики 4 нс, но был одноканальным. Схема входных каскадов была все той же, с нувисторами. Конструктив взяли от С1-64, изменилась только передняя панель. Производила их, как и С1-64, ЛОРТА, но выпущено было мало – возможно, результат оказался не слишком удачным.


[отсюда]

Количество органов управления сильно меньше по сравнению с С1-64.

[отсюда]

Вид справа, окно для дополнительных регулировок и разъемов не предусмотрено.

[отсюда]

Задняя стенка немного отличается, но компоновка осталась прежней. Причем вся стенка представляет собой массивную алюминиевую плиту с ребрами, которая используется как радиатор для транзисторов.


[отсюда]

Внутри тоже видны некоторые отличия в компоновке от С1-64.

[отсюда]

Однако тема получила продолжение и в конце 70-х – самом начале 80-х годов (не позднее 1980 года) все та же ЛОРТА начала выпуск осциллографа С1-79. Это была двухканальная версия С1-71, с полосой 100 МГц. Корпус остался прежним, разработанным еще для С1-64. Что интересно, экран тоже остался узким, как на С1-64 и С1-71, хотя в это время если не выпускали, то заканчивали подготовку к выпуску С1-64А с широким экраном.

Корпус остался примерно таким же, но компоновка разъемов, ручек и переключателей существенно изменилась.

[отсюда]

Функциональные группы органов управления выделены не линиями, как на предыдущих моделях, а окраской.


[отсюда]

Правда, попадаются и совсем “лысые” экземпляры.

[отсюда]

Вид слева и справа.

[отсюда]


[отсюда]

Вид сзади. Картина знакомая, только сверху прикручен кожух.

[отсюда]
Внутри компоновка существенно отличается.

[отсюда]

Но самым популярным советским осциллографом стал не С1-64 и его последователи. Об этом в третьей части.
Часть 3

is000.livejournal.com

Осциллограф: история и классификация – ToolBoom

Осциллограф – это один из самых важных и незаменимых инструментов для анализа электрических сигналов, без которого невозможно представить себе ни одну мастерскую, не говоря уже о крупных сервисных центрах. Осциллографы предназначены для визуализации амплитудных изменений подаваемого на них сигнала во временном разрезе и позволяют наблюдать, измерять, а также записывать этот сигнал. Современные осциллографы являются отличными инструментами для тестирования, отладки и устранения неполадок, потому что с их помощью можно определять работоспособность отдельно взятых электронных компонентов, а также модулей в сборе.

История осциллографов берет свое начало с 1893 года, когда французский физик Андре Блондель представил миру собственноручно построенный магнитоэлектрический осциллограф с бифилярным подвесом. Данный прибор позволял регистрировать значения электрических величин, таких как интенсивность переменных токов, на движущейся ленте записи при помощи чернильного маятника, подсоединенного к катушке. Так как при работе использовались сразу нескольких механических приспособлений, первые осциллографы были не слишком точными и имели очень малую полосу пропускания, в диапазоне 10-19 кГц.

Полностью автоматический ондограф Госпиталье – предшественник магнитоэлектрического осциллографа с бифилярным подвесом Андре Блонделя

По настоящему осциллографы эволюционировали с появлением электронно-лучевой трубки (CRT), которую изобрел в 1897 году немецкий физик Карл Браун. A.C. Cossor – британская компания, которая первой в мире адаптировала данную технологию, представив в 1932 году первый осциллограф на ЭЛТ.

По окончанию Второй мировой войны измерительные приборы, а с ними, соответственно, и осциллографы, преуспевали в развитии во всех частях мира, но в первую очередь это было заметно в Европе и Америке. В 1946 году Говард Воллюм и Мелвин Джек Мердок основали компанию Tektronix, которая вскоре стала мировым лидером в осциллографии. В том же году Воллюм и Мердок изобрели свой первый осциллограф со ждущей разверткой — они использовали эту технологию в модели 511, которая имела полосу пропускания 10 МГц. Ждущей разверткой в осциллографе принято считать развертку, которая срабатывает только во время протекания наблюдаемого электрического импульса.

В 1950-х годах практически во всех технически развитых странах стали производить эти приборы, благодаря чему осциллографы превратились в универсальный инструмент для измерений. Полоса пропускания и точность осциллографов стремительно увеличивались, сначала с появлением первых промышленных аналоговых моделей, а затем и с появлением цифровых осциллографов в 1985-м году. Этот год можно с уверенностью назвать одной из ключевых точек в истории развития осциллографии. Именно в этом году для исследовательского центра CERN был разработан первый в мире цифровой запоминающий осциллограф. Созданием данного прибора руководил Уолтер ЛеКрой (Walter LeCroy), основатель компании LeCroy. Начиная с 1980-х годов рынок цифровых осциллографов прогрессировал невероятными темпами, благодаря чему эти приборы по сей день являются незаменимыми.

Как и в случае с любым другим электронным оборудованием, по способу обработки входного сигнала осциллографы можно разделить на аналоговые и цифровые. Оба типа, конечно же, обладают своими плюсами, минусами и уникальными характеристиками, поэтому давайте все же разберем их более детально.

Аналоговый осциллограф

Единичные экземпляры аналоговых осциллографов все еще можно встретить на рабочих столах мастеров старой закалки, которые в меру своей привычки не могут перейти в век цифрового измерения сигналов. Но даже такие редкие аналоговые модели постепенно вытесняются цифровыми собратьями, потому что ситуация на рынке измерительных приборов аналогична рынку персональных компьютеров, где стоимость компонентов постоянно снижается.

Практически любой аналоговый осциллограф должен быть оснащен одним или несколькими вертикальными каналами, горизонтальным каналом, временной базой, схемой запуска (спусковой схемой), и, конечно же, ЭЛТ модулем. Вертикальный канал должен содержать компенсированный аттенюатор, предусилитель, линию задержки и вертикальный усилитель, который предназначен для усиления сигнала до нужного для ЭЛТ модуля уровня. Горизонтальный канал может использоваться в двух разных режимах работы: внутреннем и внешнем. Оба режима горизонтального канала, по аналогии с вертикальным, работают через горизонтальный усилитель.

Временная база в основном состоит из триггеров, интегрирующего усилителя, а также схем для суммирования и инвертирования.

Схема запуска состоит из селектора фронта, триггера и схемы производного действия. Селектор фронта предназначен для переключения между спадающим и нарастающим фронтом. Схема триггера Шмитта, которая выводит сигнал прямоугольной формы, синхронизируется с другими спусковыми событиями. Управление уровнем запуска (спуска) производится посредством изменения переходного напряжения триггера Шмитта.

ЭЛТ модулем принято называть специальную вакуумную трубку, содержащую электронную пушку, набор горизонтальных и вертикальных отклоняющих пластин, несколько электронных линз, а также дисплей, окрашенный внутри слоями флуоресцентного и фосфоресцентного покрытия.

В большинстве случаев полоса пропускания аналоговых осциллографов исчисляется несколькими сотнями мегагерц, а основным «ограничителем» полосы является именно ЭЛТ модуль. Такие приборы могут использоваться для отображения в реальном времени моментальных изменений сигналов, так как весь процесс вывода сигнала на экран не проходит цифровую обработку. К аналоговым осциллографам такие понятия, как буферизация, обработка входного сигнала и другие термины, относящиеся к современным цифровым моделям, конечно же, неприменимы. Подающиеся на вход сигналы непрерывно отображаются с небольшой задержкой, обусловленнойнепосредственно компонентами электронных схем прибора.

Цифровой осциллограф

Как правило, цифровые осциллографы разделяют на три основных подтипа:

  • запоминающий осциллограф (DSO), использующий технологию выборки в реальном времени;
  • стробоскопический осциллограф (DSaO), использующий выборку в эквивалентном масштабе времени;
  • фосфорный осциллограф (DPO), использующий продвинутые технологии выборки и обработки сигналов.

Цифровые запоминающие осциллографы появились благодаря технологической эволюции гибридных аналогово-цифровых преобразователей (ADC), ответственных за быстрое и точное оцифровывание высокочастотных сигналов, а также благодаря разработкам в сфере запоминающих устройств, которые в подобных приборах должны сохранять данные настолько быстро, насколько осуществляется выборка, и компактных дисплейных модулей с низким энергопотреблением. По сути, запоминающие осциллографы используют аналогово-цифровые преобразователи для представления данных о сигналах в цифровом формате.

Цифровым стробоскопическим осциллографом принято называть прибор, который для получения изображения формы сигнала использует упорядоченную/случайную выборку мгновенных значений исследуемого сигнала и осуществляет его временное преобразование. Принцип работы подобного осциллографа базируется на стробоскопическом эффекте, поэтому DSaO использует измерение мгновенных значений повторяющихся сигналов при помощи коротких стробоскопических импульсов. Благодаря этому принципу такие осциллографы обеспечивают широкую полосу пропускания и обладают высокой чувствительностью.

Цифровые фосфорные осциллографы – это наиболее развитый и высокотехнологичный тип осциллографов, которые существуют на сегодняшний день. DPO отображают сигнал в трех плоскостях, что в какой-то мере можно сравнить с производительностью аналогового осциллографа: временном, амплитудном и амплитудном в течении времени (интенсивность). Такие осциллографы обладают высокой плотностью выборки, а также присущей подобным приборам способностью захватывать данные по интенсивности исследуемого сигнала. Дисплей DPO значительно облегчает распознавание основной формы сигнала от его переходных характеристик – картинка основного сигнала выглядит значительно ярче.

Тенденции развития

Традиционно, производство современных цифровых осциллографов ориентировано на разработку устройств с более широкой полосой пропускания и увеличение быстродействия. На сегодняшний день полоса пропускания осциллографов ведущих производителей достигает 6-7 ГГц и даже больше (у некоторых осциллографов для расширенного анализа сигналов).

С другой стороны, есть тенденция к разработке портативных устройств. Эти устройства не будут иметь характеристик лабораторных осциллографов, но являются компактными, мобильными, и имеют привлекательную цену. По размерам и форм-фактору они очень напоминают современный мобильный телефон.

Разработаны также USB-осциллографы, которые работают в паре с персональным компьютером, и превращают его в измерительное устройство. Управление происходит с ПК, а сигнал отображается на его экране. Как правило, это небольшое и легкое устройство. С его помощью можно легко проводить обработку сигнала (которую на самом деле выполняет ваш ПК). Преимуществом является то, что сигнал можно легко сохранить, обработать, распечатать или переслать.

В заключение

Осциллограф – это невероятно полезный в работе инструмент и, наверное, одна из лучших инвестиций, которую вы можете сделать, занимаясь ремонтом, отладкой и тестированием различной техники. В ассортименте нашего магазина представлен широкий выбор цифровых осциллографов, от бюджетных вариантов до высокотехнологичных производительных моделей. Если у вас возникли вопросы по выбору такого прибора, обращайтесь в нашу техническую поддержку, где вам обязательно помогут.

Дмитрий Мамчур

toolboom.com

Осциллограф: история и классификация – Masteram

Осциллограф – это один из самых важных и незаменимых инструментов для анализа электрических сигналов, без которого невозможно представить себе ни одну мастерскую, не говоря уже о крупных сервисных центрах. Осциллографы предназначены для визуализации амплитудных изменений подаваемого на них сигнала во временном разрезе и позволяют наблюдать, измерять, а также записывать этот сигнал. Современные осциллографы являются отличными инструментами для тестирования, отладки и устранения неполадок, потому что с их помощью можно определять работоспособность отдельно взятых электронных компонентов, а также модулей в сборе.

История осциллографов берет свое начало с 1893 года, когда французский физик Андре Блондель представил миру собственноручно построенный магнитоэлектрический осциллограф с бифилярным подвесом. Данный прибор позволял регистрировать значения электрических величин, таких как интенсивность переменных токов, на движущейся ленте записи при помощи чернильного маятника, подсоединенного к катушке. Так как при работе использовались сразу несколько механических приспособлений, первые осциллографы были не слишком точными и имели очень малую полосу пропускания, в диапазоне 10-19 кГц.

Полностью автоматический ондограф Госпиталье – предшественник магнитоэлектрического осциллографа с бифилярным подвесом Андре Блонделя

По настоящему осциллографы эволюционировали с появлением электронно-лучевой трубки (CRT), которую изобрел в 1897 году немецкий физик Карл Браун. A.C. Cossor – британская компания, которая первой в мире адаптировала данную технологию, представив в 1932 году первый осциллограф на ЭЛТ.

По окончанию Второй мировой войны измерительные приборы, а с ними, соответственно, и осциллографы, преуспевали в развитии во всех частях мира, но в первую очередь это было заметно в Европе и Америке. В 1946 году Говард Воллюм и Мелвин Джек Мердок основали компанию Tektronix, которая вскоре стала мировым лидером в осциллографии. В том же году Воллюм и Мердок изобрели свой первый осциллограф со ждущей разверткой. Они использовали эту технологию в модели 511, которая имела полосу пропускания 10 МГц. Ждущей разверткой в осциллографе принято считать развертку, которая срабатывает только во время протекания наблюдаемого электрического импульса.

В 1950-х годах практически во всех технически развитых странах стали производить эти приборы, благодаря чему осциллографы превратились в универсальный инструмент для измерений. Полоса пропускания и точность осциллографов стремительно увеличивались, сначала с появлением первых промышленных аналоговых моделей, а затем и с появлением цифровых осциллографов в 1985-м году. Этот год можно с уверенностью назвать одной из ключевых точек в истории развития осциллографии. Именно в этом году для исследовательского центра CERN был разработан первый в мире цифровой запоминающий осциллограф. Созданием данного прибора руководил Уолтер ЛеКрой (Walter LeCroy), основатель компании LeCroy. Начиная с 1980-х годов рынок цифровых осциллографов развивался невероятными темпами, благодаря чему эти приборы по сей день являются незаменимыми.

Как и в случае с любым другим электронным оборудованием, по способу обработки входного сигнала осциллографы можно разделить на аналоговые и цифровые. Оба типа, конечно же, обладают своими плюсами, минусами и уникальными характеристиками, поэтому давайте все же рассмотрим их более детально.

Аналоговый осциллограф

Единичные экземпляры аналоговых осциллографов все еще можно встретить на рабочих столах мастеров старой закалки, которые в меру своей привычки не могут перейти в эпоху цифрового измерения сигналов. Но даже такие редкие аналоговые модели постепенно вытесняются цифровыми собратьями, потому что ситуация на рынке измерительных приборов аналогична рынку персональных компьютеров, где стоимость компонентов постоянно снижается.

Практически любой аналоговый осциллограф должен быть оснащен одним или несколькими вертикальными каналами, горизонтальным каналом, временной базой, схемой запуска (спусковой схемой), и, конечно же, ЭЛТ модулем. Вертикальный канал должен содержать компенсированный аттенюатор, предусилитель, линию задержки и вертикальный усилитель, который предназначен для усиления сигнала до нужного для ЭЛТ модуля уровня. Горизонтальный канал может использоваться в двух разных режимах работы: внутреннем и внешнем. Оба режима горизонтального канала, по аналогии с вертикальным, работают через горизонтальный усилитель.

Временная база в основном состоит из триггеров, интегрирующего усилителя, а также схем для суммирования и инвертирования.

Схема запуска состоит из селектора фронта, триггера и схемы производного действия. Селектор фронта предназначен для переключения между спадающим и нарастающим фронтом. Схема триггера Шмитта, которая выводит сигнал прямоугольной формы, синхронизируется с другими спусковыми событиями. Управление уровнем запуска (спуска) производится посредством изменения переходного напряжения триггера Шмитта.

ЭЛТ модулем принято называть специальную вакуумную трубку, содержащую электронную пушку, набор горизонтальных и вертикальных отклоняющих пластин, несколько электронных линз, а также дисплей, окрашенный внутри слоями флуоресцентного и фосфоресцентного покрытия.

В большинстве случаев полоса пропускания аналоговых осциллографов исчисляется несколькими сотнями мегагерц, а основным «ограничителем» полосы является именно ЭЛТ модуль. Такие приборы могут использоваться для отображения в реальном времени моментальных изменений сигналов, так как весь процесс вывода сигнала на экран не проходит цифровую обработку. К аналоговым осциллографам такие понятия, как буферизация, обработка входного сигнала и другие термины, относящиеся к современным цифровым моделям, конечно же, неприменимы. Подающиеся на вход сигналы непрерывно отображаются с небольшой задержкой, обусловленной непосредственно компонентами электронных схем прибора.

Цифровой осциллограф

Как правило, цифровые осциллографы разделяют на три основных подтипа:

  • запоминающий осциллограф (DSO), использующий технологию выборки в реальном времени;
  • стробоскопический осциллограф (DSaO), использующий выборку в эквивалентном масштабе времени;
  • фосфорный осциллограф (DPO), использующий продвинутые технологии выборки и обработки сигналов.

Цифровые запоминающие осциллографы появились благодаря технологической эволюции гибридных аналогово-цифровых преобразователей (ADC), ответственных за быстрое и точное оцифровывание высокочастотных сигналов, а также благодаря разработкам в сфере запоминающих устройств, которые в подобных приборах должны сохранять данные настолько быстро, насколько осуществляется выборка, и компактных дисплейных модулей с низким энергопотреблением. По сути, запоминающие осциллографы используют аналогово-цифровые преобразователи для представления данных о сигналах в цифровом формате.

Цифровым стробоскопическим осциллографом принято называть прибор, который для получения изображения формы сигнала использует упорядоченную/случайную выборку мгновенных значений исследуемого сигнала и осуществляет его временное преобразование. Принцип работы подобного осциллографа базируется на стробоскопическом эффекте, поэтому DSaO использует измерение мгновенных значений повторяющихся сигналов при помощи коротких стробоскопических импульсов. Благодаря этому принципу такие осциллографы обеспечивают широкую полосу пропускания и обладают высокой чувствительностью.

Цифровые фосфорные осциллографы – это наиболее развитый и высокотехнологичный тип осциллографов, которые существуют на сегодняшний день. DPO отображают сигнал в трех плоскостях, что в какой-то мере можно сравнить с производительностью аналогового осциллографа: временном, амплитудном и амплитудном в течении времени (интенсивность). Такие осциллографы обладают высокой плотностью выборки, а также присущей подобным приборам способностью захватывать данные по интенсивности исследуемого сигнала. Дисплей DPO значительно облегчает распознавание основной формы сигнала от его переходных характеристик – картинка основного сигнала выглядит значительно ярче.

Тенденции развития

Традиционно, производство современных цифровых осциллографов ориентировано на разработку устройств с более широкой полосой пропускания и увеличение быстродействия. На сегодняшний день полоса пропускания осциллографов ведущих производителей достигает 6-7 ГГц и даже больше (у некоторых осциллографов для расширенного анализа сигналов).

С другой стороны, есть тенденция к разработке портативных устройств. Эти устройства не будут иметь характеристик лабораторных осциллографов, но являются компактными, мобильными, и имеют привлекательную цену. По размерам и форм-фактору они очень напоминают современный мобильный телефон.

Разработаны также USB-осциллографы, которые работают в паре с персональным компьютером, и превращают его в измерительное устройство. Управление происходит с ПК, а сигнал отображается на его экране. Как правило, это небольшое и легкое устройство. С его помощью можно легко проводить обработку сигнала (которую на самом деле выполняет ваш ПК). Преимуществом является то, что сигнал можно легко сохранить, обработать, распечатать или переслать.

В заключение

Осциллограф – это невероятно полезный в работе инструмент и, наверное, одна из лучших инвестиций, которую вы можете сделать, занимаясь ремонтом, отладкой и тестированием различной техники. В ассортименте нашего магазина представлен широкий выбор цифровых осциллографов, от бюджетных вариантов до высокотехнологичных производительных моделей. Если у вас возникли вопросы по выбору такого прибора, обращайтесь в нашу службу технической поддержки, где вам обязательно помогут.

Дмитрий Мамчур

masteram-online.ru

Как пользоваться осциллографом и для чего он вообще нужен. Часть I

  1. Краткая история
  2. Общий принцип работы
  3. Какие бывают осциллографы
  4. Основные характеристики

К осциллографам у меня особая любовь. Кому-то бентли нравятся, а кому-то осциллографы. У каждого свои причуды. Бентли мне тоже нравится, но в отличии от всех других её владельцев, мне еще и осциллографы нравятся! =)

Главная задача осциллографа: регистрировать изменения исследуемого сигнала и выводить его на экран для просмотра. Это самый незаменимый прибор в лаборатории радиолюбителя. Можно и частоту прикинуть и амплитуду посмотреть и, что часто ещё важней, форму сигнала изучить. Решил заниматься электроникой — обязательно купи.

Краткая история

История осциллографа насчитывает уже 100 с лишним лет. В разное время над усовершенствованием прибора работали такие известные люди как Адре Блондель, Роберт Андреевич Колли, Уильям Крукс, Карл Браун, И. Ценнек, А. Венельт, Леонид Исаакович Мандельштам и многие другие.

Кстати, а вы знали, что первое подобие осциллографа создали в Российской Империи? Это сделал В 1885 году русский физик Роберт Колли. Прибор назывался осциллометр. Осциллографы того времени сильно отличались от тех, что используются сейчас!

Общий принцип работы


Надо сказать, что сейчас существует огромное количество разных осциллографов. Но для нас важен общий принцип работы, который заключается в том, что прибор регистрирует изменение напряжения сигнала и выводит его на экран. Да, именно для этого и нужен осциллограф, и всё. Но это настолько важно для физиков и инженеров, что словами передать сложно. Важность этого прибора сравнима с открытием закона всемирного тяготения.

На картинке выше приведена типичная панель управления осциллографа. Куча всяки регуляторов, кнопочек, разъемов и экран. Ужас, как во всём это разобраться? Да легко. Поехали.

Никто не обидится, если я скажу, что у осциллографа два главных органа управления. Над ними обычно написано “Развертка” или “Длительность”, “В/дел”. Разберемся!

Сначала про “В/дел”. На вход прибора ты можешь подавать сингал разной амплитуды. Захотел подал синусоиду с амплитудой в 1В, а захотел 0.2В или 10В. Как видно на картинке сверху, экран прибора обычно разделен на клеточки. Да, это та самая всем привычная декартова система координат. Так вот  “В/дел” позволяет изменять масштаб по оси Y. Другими словами можно менять размер клеточки в вольтах. Если выбрать 0.1В и подать синусоиду амплитудо в 0.2В, тогда вся синусоида займёт на экране 4 клетки. 

А при исследовании сигнала в реальной схеме амплитуда сигнала может быть такой, что весь сигнал не сможетпоместиться на экране прибора. Вот тогда ты и будешь крутить ручку регулировки “В/дел”, устанавливая необходимый масшатб оси Y таким, чтобы увидеть весь сигнал. 

Теперь про “Длительность”. Большую часть истории развития электронных осциллографов они были аналоговыми. В качестве экрана использовались ЭЛТ (электронно-лучевые трубки). Те самые, что уже и в телевизорах трудно встретить. Кому интересно, посмотрите видео ниже. Оно прекрасно объясняет принцип рисования исследуемого сигнала на экране ЭЛТ-осциллографа. Либо читаем дальше, если лень смотреть, — я расскажу о самом главном. 

Итак, ручка “длительность” (“разёртка”) нужна для того, чтобы задать с какой скоростью будет бегать луч на экране прибор слева на право. (Ты думал, что там рисуется линия целиком? Нет, это в современных цифровых приборах так, но оних позже) Для чего это нужно? Да собственно на этом и строится работа осциллографа. Луч бегает слева-направо, а подаваемый на вход сигнал просто отклоняет его вверх или вниз. В итоге ты и видишь на экране прибора красивую картинку синусоиды или какого-нибудь шума. 

Ладно, зачем это нужно теперь понятно. Остался вопрос зачем менять скорость перемещения или, другими словами, частоту пробегания луча по экрану (частоту развертки)? 

Может ты замечал сам или видел на каком-нибудь шоу или концерте такой эффект, что когда в темноте вспихивал яркий свет на долю секунды, тогда казалось, что все движение прекратилось, мир замер? Поздравляю ты подметил стробоскопический эффект. Есть даже такое устройство — стробоскоп. Стробоскоп позволяет разглядывать быстродвижущиеся предметы. В осциллографе тоже самое, он по сути представляет собой “электронный” стробоскоп! Только с помощью изменения частоты развертки мы добиваемся замирания картинки на экране прибора. И если частота развертки будет близка или совпадать с частотой сигнала, то на экране ты увидишь статичную картинку, которая словно нарисована на бумаге.

А иначе будет казаться, что синусоида куда-то бежит. Я не буду рассказывать как это достигается. Главное понять принцип, а детали конкретной реализации уже не столь важны. Все остальные функции осциллографа уже являются дополнением. Их наличие сильно упрощает исследование сигналов. И если каких-то из них нет в твоём приборе, то можно жить спокойно. 

Какие бывают осциллографы

Пока что ещё можно выделить три основных вида осциллографов: аналоговые, цифровые и аналогово-цифровые. Цифровых с 80х годов 20 века становится всё больше. Сейчас они представляют самую многочисленную группу. Обладают множеством полезных дополнитель

mp16.ru

Осциллограф Википедия

Аналоговый осциллограф

Осцилло́граф (лат. oscillo — качаюсь + греч. γραφω — пишу) — прибор, предназначенный для исследования (наблюдения, записи, измерения) амплитудных и временны́х параметров электрического сигнала, подаваемого на его вход, и наглядно отображаемого непосредственно на экране, либо регистрируемого на фотоленту.

Современные осциллографы позволяют исследовать сигнал гигагерцовых частот. Для исследования более высокочастотных сигналов можно использовать электронно-оптические камеры.

Классификация[ | ]

По логике работы и назначению осциллографы можно разделить на три группы[1]:

  • реального времени (аналоговый)
  • запоминающий осциллограф (storage oscilloscope)
    • аналоговый (например, с запоминающим устройством на ЭЛТ)
    • цифровой (DSO — digital storage oscilloscope)
  • стробирующий осциллограф (sampling oscilloscope)

Осциллографы с непрерывной развёрткой для регистрации кривой на фотоленте (шлейфовый осциллограф).

По количеству лучей: однолучевые, двулучевые и т. д. Количество лучей может достигать 16 и более (n-лучевой осциллограф имеет n сигнальных входов и может одновременно отображать на экране n графиков входных сигналов).

Осциллографы с периодической развёрткой делятся на: универсальные (обычные), скоростные, стробоскопические, запоминающие и специальные; цифровые осциллографы могут сочетать возможность использования разных функций.

Также существуют осциллографы, совмещенные с другими измерительными приборами (напр. мультиметром). Такие приборы называются скопметрами.

Осциллограф также может существовать не только в качестве автономного прибора, но и в виде приставки к компьютеру: в виде карты расширения, или подключаемой через какой-либо внешний порт.

Устройство[ | ]

Осциллограф с дисплеем на базе ЭЛТ состоит из следующих основных частей:

  • Осциллографическая электронно-лучевая трубка;
  • Блок горизонтальной развёртки. Генерирует периодический или однократный сигнал пилообразной формы (линейно нарастающий и быстро спадающий), который подаётся на пластины горизонтального отклонения ЭЛТ. Во время спадающей фазы (обратный ход луча) также формируется импульс гашения электронного луча, который подаётся на модулятор ЭЛТ;
  • Входной усилитель исследуемого сигнала, выход которого подключён к пластинам вер

ru-wiki.ru

Люди. Годы. Осциллографы | Техника и Программы

Так что же это за класс приборов – осциллографы, – насчитывающий вековую историю? А может быть, и многовековую? Ведь Зевс, когда проектировал первую молнию и испытывал ее, должен был иметь осциллограф. Увы, мифы Древней Греции молчат, Гомер унес свои тайны в пещеры Аида.

Поэтому мы попытаемся приотрыть тайну возникновения осциллографа и проследить ее судьбу, прошлое, настоящее и будущее этого направления на примере одного из мировых лидеров второй половины XX в. – Вильнюсского НИИ радиоизмерительных приборов (далее – ВНИИРИП).

Афина Паллада, покровительница наук, научила людей думать, а Прометей, покровитель ремесел, научил людей делать топоры и… приборы. Так появились осциллографы.

Вкратце история развития осциллографии выглядит следующим образом [1, 2].

В 1885 году российский физик А.Р.Колли создал осциллометр –

прототип шлейфовых осциллографов.

В 1893 году французский физик Андре Блондель (Andre Blondel)

изобрел электромеханический осциллограф.

В 1897 году немецкий ученый Карл Фердинанд Браун (Karl Ferdi- nand Braun) создал первый катодно-лучевой осциллограф для индикации электромагнитной волны.

В 1907 году российский ученый, профессор Б.Л.Розинг (18361933) предложил телевизионную систему с электронно-лучевой трубкой (ЭЛТ) с видимым изображением,  на экране которой он увидел форму электрического разряда молнии. Эта система и стала прообразом электронного осциллографа.

В 1931 году американская компания General Radio впервые продемонстрировала осциллограф, который уже можно было использовать вне помещений лаборатории.

Первый двухлучевой осциллограф был разработан в конце 1930-х годов английской компанией Cossor, в дальнейшем Raytheon.

Фосфорное послесвечение в ЭЛТ было введено компанией Du Mont Labs, США.

Во время Второй мировой войны осциллографы использовались при разработке радаров, а самой известной являлась модель осциллографа 248 фирмы Du Mont Labs.

Наибольшее развитие осциллографы получили после окончания Второй мировой войны. Вычислительная техника, расщепление атома и радиолокация стали основными двигателями в развитии осциллографии. Эта техника стала развиваться во всех частях света, и в первую очередь – в Европе и Америке. К концу 1940-х годов мировым лидером в осциллографии стала компания Tektronix, вскоре к ней присоединилась компания Hewlett-Packard, и уже в 1950-х годах практически во всех технически развитых странах стали производить эти приборы. Не отстали и Нижегородская лаборатория Бонч-Бруевича, московские и вильнюсские предприятия.

В 1946 году Говард Воллюм (Howard Vollum) и Мелвин Джек Мёрдок (Melvin Jack Murdock), основатели фирмы Tektronix, изобрели так называеымй осциллограф со ждущей разверткой, что и было использовано в модели 511, имевшей полосу пропускания 10 МГц [3]. Это окончательно превратило осциллограф в универсальный измерительный прибор.

Первый промышленный стробоскопический осциллограф 185A был выпущенн фирмой Hewlett-Packard в 1960 году и имел полосу пропускания 500 МГц [4].

В 1963 году фирма Tektronix впервые выпустила на рынок осциллограф на бистабильной запоминающей ЭЛТ, позволивший регистрировать однократные сигналы.

Первый цифровой осциллограф был разработан под руководством Уолтера ЛеКроя (Walter LeCroy), основателя фирмы LeCroy, для исследовательского центра CERN в конце 1970-x годов. Начиная с 1980-х годов цифровые осциллографы заняли лидирующие позиции на рынке.

Первый советский промышленный электронный осциллограф был разработан на заводе 555 в Вильнюсе Сергеем Николаевичем Макеевым в 1948 году и серийно выпускался Рыбинским приборостроительным заводом. В 1957 году его наименование было изменено с ЭО-7 на С1-1. Полоса пропускания осциллографа составляла 250 кГц (по другим данным – 300 кГц).

А что же в Вильнюсе?

В 1925 году предприимчивые польские инженеры, Самуэль Хволес (Samuel Chvoles) и Хирш Хволес (Hirsh Chvoles), а также Нахман Левин (Nachman Levin) создали в Вильно (Вильнюс) радиотехническое товарищество Elektrit. Первоначально существовал магазин на ул. Виленска, 24 (в настоящее время ул. Вильняус), который импортировал и продавал радиодетали и радиоприемники [5].

Владельцы предприятия бысто осознали, что куда выгоднее самим производить радиоприемники и их комплектующие. В 1927 году компания получает официальное разрешение на строительство завода и с тех пор уже известна как производитель радиоприемников. В том же году, радиоприемник завода Elektrit награжден золотыми медалями на выставках в Париже и Флоренции.

C 1934-го по 1936 год на ул. Шептицкого было закончено строительство новых производственных мощностей. Довоенные карты Вильно подтверждают, что в 1930-х годах ул. Шептицкого (ul. Generała Szeptyckiego), 16а – это сегодня ул. Шевченкос, 16а.

Эмблема радиотехнического товарищества Elektrit в 1930-х годах

После завершения строительства завод занимал 10 300 кв.м. площадей, имел собственную электростанцию, большую столярную мастерскую, механический цех,  сборочный цех,  лаборатории, склады и актовый зал. Работал сборочный конвейер с шестью производственными линиями. Всего завод выпустил 54 тысячи радиоприемников на общую сумму, эквивалентную 1,2 млн. долларов США. На заводе были заняты 1100 работников, в том числе большое количество инженеров и техников, что делало завод одним из крупнейших работодателей в Вильно. На заводе действовала профсоюзная организация.

Кроме того, компания выпускала собственные динамики, конденсаторы, катушки индуктивности, трансформаторы, а также корпуса приемников. Корпуса радиоприемников были изготовлены очень тщательно и со вкусом. Их характерной чертой была отделка под орех. Наряду с внешней элегантностью, они имели хорошую акустику. Доля собственных компонентов в производстве выросла до 80%.

Карта Вильнюса 1935 г.

В центре хорошо видна ул. генерала Шептицкого, где был построен завод Elektrit. Стрелкой показано местоположение завода

С 1937 года радиоприемники завода стали экспортировать в Индию, Бразилию, Латвию, СССР, Турцию, Грецию и Южную Африку.

Elektrit был единственным экспортером электротехники на польском рынке, а выпускаемые этим заводом радиоприемники по тем временам были мирового класса…

Таким образом, на нашей “площадке” еще до Второй мировой войны работало одно из крупнейших предприятий Вильнюса, к тому же, как сегодня принято говорить, высокотехнологического направления.

Радиоприемник “Allegro” завода Elektrit образца 1938 г.

С началом Второй мировой войны в 1939 году, непосредственно перед передачей Вильно Литовскому государству, в Вильнюс были введены части Красной Армии. Предприятие было национализировано. Оборудование было демонтировано и перевезено в СССР, в Минск, где было построено новое предприятие под названием “Радиозавод имени Молотова”, в 1958 году переименнованный в Минский приборостроительный завод им. В.И.Ленина (далее – Минский завод).

Однако смонтировать и запустить его смогли только  осенью 1940 года, когда часть рабочих и специалистов переехала из Вильнюса в Минск и где каждому обещали дать советское гражданство и жилье (по другим данным их депортировали).

Завод начал выпускать радиоприемники “КИМ” – копию вильнюсского “Regent”, а также “Пионер” – модифицированную версию вильнюсского “Herold”. Более известный “Маршалл” также являлся копией радиоприемника “Komandor”.

В  1941-1944  годах  в  оставшихся  помещениях  завода  Elektrit

Вермахт Германии ремонтировал свою радиоаппаратуру.

После освобождения Вильнюса летом 1944 года производство было возрождено. С 13 октября 1944 года предприятие получило название “Союзный Государственный завод 555”. Это было уже предприятие Министерства авиационной промышленности (МАП) СССР с совершенно другими приоритетами.

Принципиальная схема радиоприемника “Allegro” завода Elektrit

А.Ф. Денисов, Я.М. Россоский, Люди. Годы. Осциллографы, Вильнюс 2012

nauchebe.net

Как выбрать осциллограф | РОБОТОША

Продолжаю, начатую в предыдущей статье серию публикаций, посвященных осциллографам. Сегодня я расскажу о том какие основные типы осциллографов бывают, расскажу об их преимуществах и недостатках, рассмотрю основные характеристики осциллографов и постараюсь дать советы по поводу того, как подобрать инструмент, соответствующий решаемым задачам.

Выбрать новый осциллограф может оказаться довольно сложной задачей, так как в настоящий момент на рынке представлено довольно много моделей. Вот некоторые основные моменты, которые помогут вам принять правильное решение и понять, что вам действительно необходимо.

Перед тем как собраться купить новый осциллограф, постарайтесь ответить для себя на следующие вопросы:

  1. Где вы собираетесь использовать прибор?
  2. Сигналы в скольких точках схемы вам потребуется измерять одновременно?
  3. Какова амплитуда сигналов, которые вы, как правило, измеряете?
  4. Какие частоты присутствуют в измеряемых вами сигналах?
  5. Вам необходимо измерять периодические или одиночные сигналы?
  6. Исследуете ли вы сигналы в частотной области и нужна ли вам функция быстрого преобразования Фурье?

 

Аналоговый или цифровой осциллограф?

Вы можете все еще быть поклонником аналоговых приборов, но в современном цифровом мире их особенности не могут сравниться с возможностями современных цифровых запоминающих осциллографов. Кроме того, в аналоговых моделях может применяться устаревшая технология с весьма ограниченными возможностями. Также могут возникнуть проблемы с наличием запчастей.

Аналоговый осциллограф

Преимуществом аналогового осциллографа является отсутствие шумов, имеющих по свей сути цифровую природу, а именно отсутствует шум АЦП, который проявляется в виде ступенчатой осциллограммы на цифровых приборах. Если для вас очень важна точность в передаче формы исследуемого сигнала, тогда ваш выбор — аналоговый прибор.

Цифровой осциллограф

Преимущества цифрового осциллографа очевидны:

  • Портативность и небольшой вес (хотя, по поводу веса вспомнил высказывание одного из своих университетских преподавателей: «Прибор весящий менее 50 килограммов, провод от которого вы случайно зацепите, точно упадет вам на ногу». Так что вес не для всех является преимуществом )
  • Большая полоса пропускания
  • Возможность измерения одиночного сигнала
  • Дружественный интерфейс
  • Возможно проведение измерений на экране
  • Цветной дисплей
  • Возможность хранения и печати данных
  • Возможность цифровой обработки сигналов (в виде быстрого преобразования Фурье, сложения, вычитания, интегрирования и пр.)
  • Возможность применения к сигналам цифровой фильтрации

Цифровые осциллографы также дают возможность для высокоскоростного сбора данных и могут быть интегрированы в системы автоматического тестирования (актуально для производств).

Также, зачастую цифровые приборы могут включать в одном корпусе дополнительные устройства:

  • Цифровой (логический) анализатор (эти устройства позволяют плюс ко всему анализировать пакеты цифровых данных, например передаваемых через различные интерфейсы I2C, USB, CAN, SPI и прочие)
  • Генератор функций (сигналов произвольной формы)
  • Генератор цифровых последовательносетй

Если осциллограф выполнен в виде переносного устройства, то часто он совмещается с мультиметром, их еще называют скопметрами (иногда очень даже с неплохими характеристиками). Неоспоримыми преимуществами таких устройств являются независимость от питающей сети, компактность, мобильность и универсальность.

Осциллограф-мультиметр (скопметр)

 

USB-осциллографы

Осциллографы на базе ПК, или как их еще называют, USB-осциллографы, становятся все более популярными, поскольку они дешевле традиционных. Используя компьютер, они предлагают преимущества большого цветного дисплея, быстрого процессора, возможности сохранения данных на диск и работы на клавиатуре. Другим большим преимуществом является возможность быстрого экспорта данных в электронные таблицы.

Среди USB-приставок часто попадаются настоящие комбайны, совмещающие несколько устройств в одном корпусе: осциллограф, цифровой анализатор, генератор сигналов произвольной формы и генератор цифровых последовательносетй.

Ценой удобству и универсальности является худшие характеристики, нежели у их автономных собратьев.

Осциллограф-приставка

 

Важные характеристики осциллографов

Разберем на какие характиристики приборов следует обращать внимание при выборе осциллографа.

1. Полоса пропускания (bandwidth)

Выбирайте осциллограф, имеющий достаточную полосу пропускания, которая бы захватывала верхние частоты, содержащиеся в измеряемых вами сигналах.

Полоса пропускания  является, пожалуй, наиболее важной характеристикой осциллографа. Именно она определяет диапазон сигналов, которые вы планируете исследовать на экране своего осциллографа, и именно этот параметр, в значительной степени влияет на стоимость измерительного прибора.

АЧХ осциллографа

Для осциллографов с полосой пропускания 1ГГц и ниже, амплитудно-частотная характеристика (АЧХ) устройства представляет из себя, так называемую, гауссовскую АЧХ, которая является АЧХ однополюcного фильтра нижних частот. Этот фильтр пропускает все частоты ниже некоторой  (которая и является частотой пропускания осциллографа) и подавляет все частоты, присутствующие в сигнале, превышающие эту частоту среза.

Частота, на которой входной сигнал ослабляется на 3 дБ считается полосой пропускания осциллографа. Ослабление сигнала на 3 дБ означает примерно 30% амплитудной ошибки! Другими словами, если на входе осциллографа у вас 100 МГц синусоидальный сигнал, а полоса пропускания осциллографа также 100 МГц, то измеряемое напряжение размаха амплитуды величиной в 1В с помощью этого осциллографа составит около 700 мВ (-3 дБ = 20 lg(0.707 / 1.0). По мере того, как частота вашей синусоиды будет повышаться (при сохранении постоянной амплитуды), измеряемая амплитуда понижается. Таким образом, нельзя провести точные измерения сигналов, которые имеют верхние частоты вблизи частоты пропускания вашего осциллографа.

Так как же определить необходимую пропускную полосу прибора? Для измерений чисто аналоговых сигналов необходим осциллограф, который имеет заявленную полосу пропускания, по крайней мере, в три раза выше, чем самые высокие частоты синусоидальных волн, которые вам, возможно необходимо будет измерить. В 1/3 от величины полосы пропускания осциллографа, уровень ослабления сигнала минимален. Для того, чтобы измерить более точно, используйте следующее правило: ширина полосы пропускания, деленная на 3 — это примерно 5% ошибка, а деленная на 5 — 3% ошибка. Другими словами, если вы будете измерять частоты 100МГц, выбирайте осциллограф, по крайней мере, 300МГц, а лучше всего 500МГц. Но, к сожалению, это повлечет за собой увеличение цены…

А как насчет требуемой полосы пропускания для цифровых приложений, где в основном и используются современные осциллографы? Как правило, нужно выбирать осциллограф, который имеет пропускную способность, по крайней мере в пять раз больше, чем частота процессора/контроллера/шины в вашей системе. Например, если максимальная частота в собственных проектах составляет 100 МГц, то вы должны выбрать осциллограф с полосой пропускания 500 МГц и выше. Если осциллограф отвечает этому критерию, он сможет захватить до пятой гармоники с минимальным затуханием сигнала. Пятая гармоника сигнала имеет решающее значение в определении общей формы ваших цифровых сигналов. Рассмотрю пример: 10 мегагерцовый меандр состоит из суммы 10-ти мегагерцового синусоидального сигнала + 30-ти мегагерцового синусоидального сигнала + 50-ти мегагерцового синусоидального сигнала и т.д. В идеале нужно выбирать прибор, который имеет полосу пропускания не ниже частоты 9-ой гармоники. Так, что если основные сигналы с которыми вы работаете — это меандры, то лучше взять прибор с полосой пропускания не менее 10 кратной частоты ваших меандров. Для меандров 100МГц, выбирайте прибор 1ГГц, но, к сожалению это значительно увеличит его стоимость…

Если вы не будете иметь под рукой осциллограф с надлежащим значением полосы частот, то при исследовании сигналов прямоугольной формы, вы увидите на экране закруглённые углы вместо чётких и ясных краёв, характеризующих высокую скорость нарастания фронта импульса. Совершенно очевидно, что такое отображение сигналов, в целом негативно влияет на точность выполняемых измерений.

Искажения формы сигнала при недостаточной полосе пропускания (на входе — прямоугольный сигнал)

Меандры имеют достаточно крутые временные подъемы и спады. Есть простое правило, чтобы узнать необходимую полосу пропускания для вашего прибора, если эти подъемы и спады важны для вас. Для осциллографа с полосой пропускания ниже 2.5ГГц,  крутой подъем (спад) может измеряться как 0.35, деленное на ширину полосы частот. Так, осциллограф 100МГц может измерять подъем до 3.5нс. Для осциллографа от 2.5ГГц до 8ГГц, используйте 0.4, деленное на ширину полосы частот и для осциллографов выше 8ГГц, используйте 0.42, деленное на ширину полосы частот. Если ваш подъем является начальной точкой для вычислений, то используйте обратную схему: если вам нужно измерить подъем 100пс, вам необходим осциллограф с полосой пропускания 0.4/100пс = 4ГГц.

 2. Частота дискретизации (sample rate)

Выбирайте осциллограф, имеющий достаточную частоту дискретизации по каждому из каналов, для того чтобы обеспечить заявленную полосу пропускания устройства в реальном времени.

Также этот параметр иногда называют частотой выборки или частотой сэмплирования.

Тесно связанной с полосой пропускания осциллографа в режиме реального времени является его максимально допустимая частота дискретизации. «В реальном времени» означает, что осциллограф может захватывать и отображать единожды полученные (не повторяющиеся) сигналы, соизмеримые с полосой пропускания прибора.

Чтобы перейти к определению частоты дискретизации, необходимо вспомнить теорему Котельникова (на западе больше известна как теорема Найквиста-Шеннона или теорема отсчетов), которая гласит, что в случае,

если аналоговый сигнал имеет ограниченную ширину спектра, то он может быть без потерь однозначно восстановлен по своим отсчетам, взятым с частотой , где  — максимальная частота, которой ограничен спектр сигнала и его можно представить в виде ряда

   

где и интервал дискретизации удовлетворяет условию

Если же максимальная частота в сигнале превышает половину частоты дискретизации, то восстановить сигнал без искажений невозможно.

Ошибочным будет считать, что  — это и есть частота пропускания осциллографа При таком предположении, минимальная требуемая частота дискретизации для осциллографа для заданной полосы пропускания является лишь удвоенной полосой пропускания осциллографа в режиме реального времени.

Искажение частотные составляющие, когда полоса пропускания осциллографа равна половине его частоты дискретизации для случая гауссовой АЧХ

как показано на рисунке, это не то же самое, что , если, конечно, фильтр осциллографа не работает как кирпичная стена (не обрезает частоты выше резко до нулевой амплитуды).

Как я уже упоминал, осциллографы с полосой пропускания 1 ГГц и ниже, как правило, имеют гауссову частотную характеристику. Это означает, что, хотя осциллограф ослабляет амплитуду сигнала с частотами выше точки -3 дБ, он не полностью устраняет эти более высокие частотные составляющие. Искаженные частотные составляющие показаны красной штриховкой на рисунке. Поэтому  всегда выше, чем полоса пропускания осциллографа .

Рекомендуется выбирать максимальную частоту дискретизации осциллографа, по крайней мере, в четыре-пять раз выше, чем полоса пропускания оциллографа в режиме реального времени, как показано на рисунке ниже. С таким параметром, восстанавливающий фильтр осциллографа может точно воспроизводить форму высокоскоростных сигналов  с разрешением в диапазоне десятков пикосекунд.

Искаженные частотные составляющие когда полоса пропускания осциллографа определена как ¼ частоты дискретизации прибора

Многие широкополосные осциллографы имеют более резкий срез АЧХ, как на рисунке ниже. Это «максимально плоская» АЧХ. Поскольку осциллограф с максимально плоской АЧХ ослабляет частотные компоненты за пределами гораздо сильнее, и начинает приближаться к идеальной характеристике теоретического фильтра «кирпичная стена», не так много точек выборки требуется для хорошего представления входного сигнала при использовании цифровой фильтрации для восстановления формы сигнала. Для осциллографов с этим типом АЧХ теоретически можно указать полосу пропускания равную .

Искаженные частотные составляющие, когда полоса пропускания осциллографа задана в 1 / 2.5 от частоты его дискретизации для приборов с «максимально плоской» частотной характеристикой.

3.Глубина памяти (memory depth)

Выбирайте осциллограф, который имеет достаточную глубину памяти для получения самых сложных ваших сигналов с высоким разрешением

Тесно связаной с максимальной частотой дискретизации осциллографа является его максимально возможная глубина памяти. Даже при том, что рекламный буклет с техническими характеристиками осциллографа может заявлять высокую максимальную частоту дискретизации, это не означает, что осциллограф всегда сэмплирует с этой высокой скоростью. Осциллограф производит выборку сигнала на максимальной скорости, когда развертка установлена ​​на одном из быстрых временных диапазонов. Но когда развертка установлена ​​на медленный диапазон, для того, чтобы захватить больший временной интервал, растянув его на экране осциллографа, прибор автоматически уменьшает частоту дискретизации, основываясь на доступной глубине памяти.

Например, давайте предположим, что осциллограф имеет максимальную частоту дискретизации 1 Гигасэмпл/с и глубиной памяти в 10 тысяч точек. Если развертка осциллографа установлена в 10 нс/дел, то для того, чтобы захватить 100 нс сигнала на экране осциллографа (10 нс/дел х 10 секций = 100 нс промежуток времени), осциллографу, нужно всего 100 точек памяти на весь экран. На своей максимальной частоте дискретизации 1 Гигасэмпл/с: 100 нс промежуток времени х 1 Гигасэмпл/с = 100 точек. Нет проблем! Но если вы установите развертку осциллографа на 10 мкс/дел для захвата 100 мкс сигнала, осциллограф автоматически уменьшит свою частоту дискретизации до 100 Мегасэмплов/с (10 тысяч точек  / 100 мкс временной промежуток = 100 Мегасэмплов/с ). Для поддержания большой частоты дискретизации осциллографа на медленных диапазонах времени требуется, чтобы прибор имел дополнительную память. В определении требуемого количества памяти поможет довольно простое уравнение, основанное на самом длинном промежутке времени сложного сигнала, который вы должны захватить и максимальной частотой дискретизации, с которой вы хотите чтобы осциллограф произвел сэмплирование.

Память = Временной интервал x Частота дискретизации

Хотя, вы можете интуитивно думать, больше памяти — всегда лучше, однако, осциллографы с большой глубиной памяти, как правило, стоят дороже. Во-вторых, для обработки длинных сигналов, используя память, требуется дополнительное время. Обычно это означает, что скорость обновления осциллограмм будет снижена, иногда весьма значительно. По этой причине, большинство осциллографов на рынке сегодня имеют ручной выбор глубины памяти, и типичная установка глубины памяти по умолчанию, как правило, относительно небольшая (от 10 до 100 тысяч точек). Если вы хотите использовать глубокую память, то вы должны вручную включить ее и идти на компромисс со скоростью обновления осциллограмм. Это означает, что вы должны знать, когда нужно использовать глубокую память, а когда — нет.

Сегментация памяти

Некоторые осциллографы имеют специальный режим работы под названием «сегментация памяти». Сегментированная память может эффективно расширить время для сбора, путем деления доступной памяти на более мелкие сегменты, как показано на рисунке ниже. Осциллограф затем выборочно оцифровывает только важные части формы исследуемого сигнала с высокой частотой дискретизации и затем устанавливает временные метки, чтобы вы знали точное время между каждым возникновением события запуска. Это позволяет осциллографу захватить много последовательных однократных сигналов с очень коротким временем повторения, при этом не пропуская важную информацию. Этот режим работы особенно полезен при захвате вспышек сигнала. Примерами сигналов импульсного типа являются импульсный радар, вспышки лазера, а также пакетированные сигналы последовательной шины данных.

Специальный режим работы осциллографа с сегментацией памяти

4. Количество каналов

Выбирайте осциллограф, который имеет достаточное количество каналов для того, чтобы производить критичные по времени измерения, между коррелированными (связанными) между собой сигналами.

Число необходимых каналов в осциллографе будет зависеть от того, какое количество сигналов вам требуется одновременно наблюдать и сравнивать между собой. Сердцем большинства встраиваемых систем, на сегодняшний день, является микроконтроллер (MCU), как упрощенно показано на рисунке ниже. Многие микроконтроллерные системы, на самом деле, являются устройствами смешанных сигналов с несколькими аналоговыми, цифровыми сигналами и последовательными шинами ввода/вывода для взаимодействия в внешним миром, который, по своей природе, всегда аналоговый.

Типичная схема микроконтроллерной системы

Сегодняшние конструкции смешанных сигналов становятся все более сложными, поэтому может потребоваться больше каналов в осциллографе для их захвата и отображения. Двух и четырехканальные осциллографы являются сегодня востребованными. Увеличение числа каналов с 2 до 4 не приводит к двукратному увеличению цены прибора, но все же цена растет ощутимо. Два канала — оптимально, большее число каналов — зависит от ваших потребностей и финансовых возможностей. Более четырех аналоговых каналов встречается очень редко, но есть и другой интересный вариант — это осциллограф смешанных сигналов.

Осциллографы смешанных сигналов объединяют в себе все измерительные возможности осциллографов с некоторыми возможностями логических анализаторов и анализаторов протоколов последовательных шин.  Наиболее важной является способность этих приборов одновременно захватывать несколько аналоговых и логических сигналов с одновременным отображением формы этих сигналов. Представьте это, как наличие нескольких каналов с высоким разрешением по вертикали (обычно 8 бит) плюс несколько дополнительных каналов с очень низким разрешением по вертикали (1 бит).

На рисунке ниже приведен пример захвата сигнала входа цифро-аналогового преобразователя (ЦАП) при помощи цифровых каналов осциллографа, одновременно с мониторингом выхода сигнала ЦАП при помощи одного аналогового канала. В этом примере, осциллограф смешанных сигналов настроен таким образом, что он запускается, если логическое состояние входа ЦАП примет самое низкое значение 0000 1010.

Осциллограф смешанных сигналов может захватывать и отображать множество аналоговых и цифровых сигналов одновременно, обеспечивая общую картину коррелированных процессов

5. Скорость обновления осциллограмм

Выбирайте осциллограф, который имеет достаточно высокую скорость обновления сигнала для того, чтобы захватить случайные и редкие события, для более быстрой отладки проектов

Скорость обновления осциллограмм может быть также важна, как и уже рассмотренные нами пропускная способность, частота дискретизации и глубина памяти,  хотя этот параметр часто упускается из виду при сравнении различных осциллографов перед покупкой. Даже при том, что скорость обновления сигнала осциллографа может казаться высокой при просмотре повторно захваченных сигналов на дисплее вашего осциллографа, эта «высокая скорость» является относительной. Например, обновление в несколько сотен сигналов в секунду, конечно достаточно быстро, но c точки зрения статистики, это может оказаться недостаточным, чтобы захватить случайное или редкое событие, которое может произойти только один раз на миллион захваченных сигналов.

При отладке новых проектов, скорость обновления осциллограмм может иметь решающее значение — особенно, когда вы пытаетесь найти и отлаживать редкие или прерывистые проблемы. Рост скорости обновления осциллограмм увеличивает вероятность захвата осциллографом «призрачных» событий.

Неотъемлемой характеристикой всех осциллографов является «мертвое время» (dead-time) или «слепое время» (blind time). Это время между каждым повторяющимся захватом сигнала осциллографом, в течение которого он обрабатывает ранее зарегистрированный сигнал. К сожалению, «мертвое время» осциллографа может иногда быть на несколько порядков больше, чем время захвата. В течение мертвого времени осциллографа, любая сигнальная активность, которая может произойти, будет пропущена, как показано на рисунке ниже. Обратите внимание на пару сигнальных выбросов, которые произошли во время простоя осциллографа, а не во время захвата (acquisition time).

Время захвата и «мертвое время» осциллографа

Из-за «мертвого времени», захват случайных и редких событий с помощью осциллографа становится азартной игрой — так же, как бросание игральных костей. Чем большее число раз вы бросите кости, тем выше вероятность получения определенной комбинации чисел. Точно так же, чем чаще обновляются сигналы осциллографа для заданного времени наблюдения, тем выше вероятность захвата и просмотра неуловимого события, о существовании которого вы даже можете по подозревать.

На рисунке ниже, показан выброс, который происходит примерно 5 раз в секунду. Некоторые осциллографы имеют максимальную скорость обновления сигнала более 1 миллиона осциллограмм в секунду, и такой осциллограф имеет 92% вероятность захвата этого выброса в течение 5 секунд. В этом примере, осциллограф захватил выброс несколько раз.

Регистрация выбросов в осциллографе со скоростью 1 миллион обновлений сигнала в секунду

Для осциллографов с обновлением 2-3 тысячи раз в секунду, вероятность захвата таких выбросов в течение 5 секунд составляет менее 1%.

6.Триггер

Выбирайте осциллограф, имеющий различные типы запуска, которые могут понадобиться, чтобы помочь выделить захват сигнала на самых сложных сигналах.

Если запуск развертки осциллографа никак не связан с исследуемым сигналом, то изображение на экране будет бежать или быть смазанным. В этом случае осциллограф отображает различные участки наблюдаемого сигнала на одном и том же месте. Для получения стабильного изображения все осциллографы содержат систему, называемую триггером. Триггер задерживает запуск развертки осциллографа до тех пор, пока не будут выполнены определенные условия.

Возможность триггерного запуска является одной из важнейших сторон осциллографа. Триггерный запуск позволяет синхронизировать захват осциллографом сигнала и отображать отдельные части сигнала. Вы можете представить триггерный запуск осциллографа как синхронизированное выполнение снимков.

Наиболее распространенным типом запуска осциллографа является срабатывание при пересечении определенного уровня. Например, запуск по фронту канала 1, когда сигнал пересекает определенный уровень напряжения (уровень запуска) в положительном направлении, как показано на рисунке ниже. Все осциллографы имеют такую возможность, и это, вероятно, наиболее часто используемый тип запуска. Но, по мере усложнения цифровых проектов, вам, возможно, потребуется дополнительно определять/фильтровать запуск осциллографа специфическими комбинациями входных сигналов для того, чтобы захватывать сигнал «в нуле», а также просматривать нужную часть сложного входного сигнала.

Запуск осциллографа по фронту цифрового импульса

Некоторые осциллографы имеют возможность запуска по импульсам, с конкретными временными характеристиками. Например, запускаться только тогда, когда импульс шириной менее 20 нс. Этот тип запуска (с уточненной шириной импульса) может быть очень полезен для запуска на непредвиденных сбоях.

Другой тип запуска, который применяется в большинстве современных осциллографов, это запуск по шаблону. Режим запуска по шаблону позволяет настроить триггер осциллографа на запуск по логической/булевой комбинации высоких уровней (единиц) и низких уровней (нулей) в двух или более входных каналах. Это может быть особенно полезным при использовании осциллографа смешанных сигналов, который может иметь до 20 аналоговых и цифровых каналов.

Более продвинутые осциллографы даже обеспечивают запуск, который синхронизируется сигналами, имеющими параметрические нарушения. Другими словами, осциллограф запускается, только если входной сигнал нарушает конкретное параметрическое состояние, такое как снижение амплитуды импульса («запуск коротышкой»), нарушение скорости края (времени нарастания/спада), или, возможно, нарушения времени длительности периода данных (триггер времени установки и удержания).

На рисунке ниже показан запуск осциллографа положительным импульсом с уменьшенной амплитудой, используя режим запуска «коротышкой». Если это импульс-коротышка происходит только один раз за миллион циклов импульсов цифрового потока, то захват этого сигнала, используя стандартный запуск по фронту, это все равно что поиск иголки в стоге сена. Также возможно производить запуск отрицательными «коротышками», а также импульсами-коротышками с определенной длительностью.

Запуск осциллографа импульсом-коротышкой

7. Работа с последовательными интерфейсами

Последовательные интерфейсы, такие как I2C, SPI, RS232/UART, CAN, USB и т.д., широко распространены во многих современных разработках, использующих цифровые и смешанные сигналы. Для проверки правильности передачи сообщения по шине, а также для аналоговых измерений сигнала требуется осциллограф. Многие специалисты для проверки последовательной шины при помощи осциллографа, используют методику, известную как «визуальный подсчет битов». Но этот ручной метод декодирования последовательной шины достаточно трудоемок и приводит к частым ошибкам.

Многие из современных цифровых осциллографов и осциллографов смешанных сигналов имеют дополнительные возможности по декодированию протокола последовательной шины и триггерного запуска. Если вы планируете плотно работать с последовательной шиной, то обратите внимание на осциллографы, которые могут декодировать и запускаться данными с последовательной шины, что может значительно сэкономить ваше время при отладке устройств.

8. Измерения и анализ сигналов

Одним из основных преимуществ современного цифрового запоминающего осциллографа, по сравнению с аналоговыми приборами, является возможность выполнять различные автоматические измерения и производить анализ оцифрованных сигналов. Практически все современные цифровые осциллографы имеют возможность ручных курсорных/маркерных измерений, а также минимальный набора автоматических измерений параметров импульса, таких как время нарастания, время спада, частоту, длительность импульса, и т.д.

В то время, как для измерений параметров импульса обычно выполняются временные или амплитудные измерения амплитуды для небольшой части сигнала, то чтобы обеспечить «ответ», например, времени нарастания или размаха напряжения, математические функции осциллографа выполняют математическую операцию по всей осциллограмме или пары сигналов для получения еще одного сигнала.

На рисунке ниже показан пример математической функции быстрого преобразования Фурье (БПФ), которое было применено к тактовому сигналу (желтая кривая). БПФ перевело сигнал в частотную область (серая кривая), которая изображает по вертикальной оси амплитуду в дБ в зависимости от частоты в Гц по горизонтальной оси. Другие математические операции, которые можно выполнять для оцифрованных сигналов – суммирование, разность, дифференцирование, интегрирование и т.д.

БПФ для сигнала цифрового таймера

Хотя математические функции над сигналом также можно выполнить в автономном режиме на ПК (например в MatLab), имея такую встроенную в осциллограф возможность можно не только упростить выполнение этих операций, но и понаблюдать за поведением сигнала в динамике.

9. Осциллографические пробники (измерительные щупы)

Качество измерений очень сильно зависит от того, что за пробник вы подключили к BNC-входу осциллографа. Когда вы подключаете любую измерительную систему к исследуемой схеме, измерительный прибор (и щуп) становится частью тестируемого устройства. Это означает, что можно «нагрузить» или изменить в некоторой степени поведение ваших сигналов. Хорошие щупы не должны нарушать входной сигнал и в идеале должны передать в осциллограф точный дубликат сигнала, который присутствовал в точке измерения.

Измерительный щуп осциллографа

Когда вы покупаете новый осциллограф, то он, как правило, поставляется со стандартным набором щупов с высоким входным сопротивлением — один пробник для каждого входного канала осциллографа. Эти типы пассивных щупов общего назначения являются наиболее распространенными и позволяют измерять широкий диапазон сигналов относительно земли. Но эти щупы имеют некоторые ограничения. На рисунке ниже показана эквивалентная схема типичного 10:1 пассивного щупа, подключенного к высокоомному входу осциллографа (вход осциллографа 1МОм).

Типичная модель пассивного пробника 1:10

Паразитные емкости присущи всем осциллографическим пробникам и входам. Они включают в себя емкость кабеля пробника Скабеля, а также входную емкость осциллографа Сприбора. «Паразитный» означает, что эти элементы в модели не специально созданы, а являются прискорбным фактом в мире электроники.  Величина паразитной емкости будет изменятся от осциллографа к осциллографу и от пробника к пробнику. Используемый в этой модели встроенный компенсационный конденсатор, предназначен для компенсации емкости в случае низкачастотного импульсного отклика.

Электрическая модель любого пробника (пассивного или активного) и осциллографа может быть упрощена до комбинации одного резистора и одного конденсатора, подключенных параллельно. На рисунке ниже показана типичная схема замещения осциллограф/пробник для 10: 1 пассивного щупа. Для низких частот или для постоянного тока, в нагрузке преобладает сопротивление 10МОм, которое, в большинстве случаев, не должно стать проблемой. Хотя 13.5 пФ не кажется большой емкостью, на высоких частотах нагрузка, полученная при помощи этой емкости, может быть значительной. Например, на частоте 500 МГц реактивное сопротивление конденсатора емкостью 13.5 пФ в этой модели составляет 23.6 Ом, которые уже являются значительной нагрузкой и может привести к искажению сигнала.

Упрощенная электрическая модель пробник-осциллограф

Для высокочастотных измерений необходимо использовать активные щупы. «Активный» означает, что пробник включает в себя усилитель, расположенный за наконечником щупа. Он позволяет существенно уменьшить емкостную нагрузку и увеличить полосу пропускания для пробника.  К недостаткам высокочастотных активных пробников можно отнести их динамический диапазон, а также их стоимость.

Есть и другие специальные измерительные задачи, о которых хотелось бы упомянуть. Если вам нужно произвести измерения на высокоскоростной дифференциальной последовательной шине, то вы должны рассмотреть возможность использования высокочастотного дифференциального активного пробника. Если вам нужно померить сигналы, имеющие очень высокое напряжение, вам понадобится специальный пробник, рассчитанный на высокое напряжение. Если вам нужно измерить ток, вы должны рассмотреть возможность использования датчика тока.

 

Если вы дочитали до этих строк, то, наверное уже поняли, что к выбору осциллографа нужно подходить достаточно серьезно, иначе это может привети к тому, что купленный дорогостоящий измерительный прибор не сможет помочь вам решать ваши задачи. Надеюсь, смог вам помочь в понимании процесса выбора осциллографа.

 


Еще по этой теме

Вы можете пропустить чтение записи и оставить комментарий. Размещение ссылок запрещено.

robotosha.ru

alexxlab

leave a Comment