светодиодный индикатор уровня низкочастотного сигнала

Под катом обзор сабжа.

Радиоконструктор пришел в пакетике:

Детали:

Плата односторонняя, без металлизации, сделано качественно, паять легко, обозначения деталей и номиналы обозначены:


По фото видно, что плата отличается от платы, отображенной на лоте продавца — есть разъем J3

Инструкция и схема:

Схема в большом разрешении



Спаял. Вот что получилось:


За пайку не ругайте — 27 лет ничего на печатках не паял. Первый опыт.
Лишних деталей в комплекте нет.

Когда паял выяснились три непонятки.
1. Не понятно, зачем тут разъем-перемычка J3? В комплекте конструктора нет ни разъема, ни перемычки. При включении как-то непонятно работают только половина светодиодов (красные и ниже). Запаял (закоротил) контакты J3
2. Резистор R9. На распечатке указан 560 Ом. В наборе — 2.2 кОм. Я из старых запасов поставил резистор МЛТ, как указанно в схеме — 560 Ом. Подумал, что китайцы перепутали что-то. При включении постоянно горели два нижних желтых светодиода — D1,D2. Перепаял резистор — взял из набора резистор в 2.2 кОм — стало работать как нужно.

Изменение в схеме - правильный резистор


3. Если загорается крайний красный светодиод и горит постоянно — то градусов до 60 начинает греться резистор R5. Странно.

Питание схемы — 9-12 Вольт. Подал 12 В на питание. Все работает нормально. Подстроечным резистором можно выставить максимально отображаемый уровень сигнала. Минимальный уровень, если подавать на устройство сигнал напряжением 1.9 Вольт:



Отсюда вывод -при штатном напряжении питания 9-12 Вольт индикатор лучше подключать к выходам УНЧ, а не после предварительного усилителя или на вход УНЧ после регулятора громкости.

Шкала свечения светодиодов — логарифмическая. Как индикатор разряда аккумулятора использовать не получится. Если подключить выход с наушников сотового телефона на максимальной громкости на вход, то горят максимум 6 желтых светодиодов.

Дальше решил поэкспериментировать с уменьшением напряжения питания. Вывод — чем меньше напряжение питания — тем чувствительнее устройство. Работало нормально от 5 в — красные светодиоды в этом случае горели и от сотового телефона. Если уменьшить напряжение до 3 вольт, светодиоды тускло горят, но не мигают. Видимо это предел. Так что я бы не запитывал от напряжения, меньше 5 вольт.

Вывод: простой, интересный радиоконструктор. Можно оборудовать им какой-нибудь самодельный УНЧ. Минусы — неудобное крепление платы — только одно крепежное отверстие. Плата (из-за панельки и микросхемы) получается достаточно высокая. Если поставить параллельно две платы, то расстояние между светодиодами обоих каналов будет достаточно большое.

mysku.ru

Светодиодные индикаторы уровня на микросхемах семейства LM3914, LM3915 и LM3916 — DRIVE2

Микросхемы LM3914, LM3915 и LM3916 фирмы National Semiconductors позволяют строить светодиодные индикаторы с различными характеристиками — линейной, растянутой линейной, логарифмической, специальной для контроля аудиосигнала.


Структура базовой микросхемы LM3914 семейства представлена на рис. 1. Ее основу составляют десять компараторов, на инверсные входы которых через буферный ОУ подается входной сигнал, а прямые входы подключены к отводам резистивного делителя напряжения. Выходы компараторов являются генераторами втекающего тока, что позволяет подключать светодиоды без ограничительных резисторов. Индикация может производиться или одним светодиодом (режим «точка»), или линейкой из светящихся светодиодов, высота которой пропорциональна уровню входного сигнала (режим «столбик»).
Входной сигнал UBX подают на вывод 5, а напряжения, определяющие диапазон индицируемых уровней, — на выводы 4 (нижний уровень UH) и 6 (верхний уровень UB). Эти напряжения должны быть в пределах от 0 до уровня, на 1,5 В меньше напряжения источника питания, подключаемого к выводу 3.
«Цена деления» индикатора, т. е. увеличение входного напряжения, вызывающее включение очередного светодиода, составляет 0.1 от разности UB-UH.
Индикатор на микросхеме LM3914 работает следующим образом. Пока напряжение на входе UBX меньше, чем на входе UH плюс «цена деления», ни один светодиод не светится. Как только эти напряжения сравняются, включается светодиод HL1, подключенный к выходу 1. В режиме «точка» при увеличении входного напряжения ток по выходу 1 прекращается и появляется ток выхода 2, при этом гашение первого светодиода и включение второго происходит одновременно, свечение как бы «перетекает» из одного светодиода в другой, и не возникает ситуации, когда оба светодиода погашены. В режиме «столбик» включение очередного светодиода, естественно, не вызывает гашения предыдущего.


Микросхема LM3914 предназначена для построения индикаторов с линейной шкалой, и все резисторы ее делителя имеют одинаковое сопротивление. У микросхемы LM3915 делитель рассчитан так, что включение каждого последующего светодиода происходит при увеличении напряжения входного сигнала в√2 раз (на 3 дБ), что удобно для контроля мощности УМЗЧ. Микросхема LM3916 специально предназначена для контроля уровня аудиосигнала. Шаг индикации у нее составляет 1 дБ в верхней части шкалы и увеличивается до 3 и 10 дБ в нижней части. В табл. 1 приведены уровни входного сигнала, включающего соответствующий светоди-од, при нормировании на максимальное напряжение 10 В.
Уровни в последней колонке приведены для случая использования микросхемы LM3916 для диапазона индикации -20…+3 дБ.
Микросхемы содержат источник опорного напряжения с номинальным значением 1,25 В. Путем подключения двух внешних резисторов напряжение может быть установлено любой большей величины, не превышающей на 2 В ниже напряжения питания, но не более 12 В. Подключение резисторов и расчет опорного напряжения осуществляется так же, как для микросхемы LM317 (КР142ЕН12):

Uоп = (R2/R1+1)x1,25В + I8R2,

где R1 — сопротивление резистора, подключенного между выводами 7 и 8, R2 — сопротивление резистора, подключенного между выводом 8 и общим проводом, I8 — вытекающий ток вывода 8, составляющий около 100 мкА.
Переключение между режимами «точка» и «столбик» производится управлением по выводу 9. При подключении этого вывода к плюсу источника питания микросхемы (вывод 3) реализуется режим «столбик», если же вывод оставить свободным или подключить к общему проводу — «точка». Порог переключения между режимами примерно на 100 мВ ниже напряжения на выводе питания 3.
Параметры микросхемы LM3914 приведены в табл. 2.


Типовая схема подачи входного сигнала на микросхему показана на рис. 2. Сопротивление резистора R1 выбирают в соответствии с уровнем входного сигнала UMAX, при котором должен включаться верхний светодиод шкалы, по формуле:
R1 = R2(UMAX/1.25-1).

Входное сопротивление микросхемы весьма велико, поэтому в большинстве случаев при расчете номинала резистора R1 его можно не учитывать.

Интересна роль резистора R3, его сопротивление определяет ток через светодиоды. На </b>рис. 3</b> представлены начальные участки выходных характеристик генераторов тока, включающих светодиоды, при различных значениях тока нагрузки источника опорного напряжения lL(REF) (ток вывода 7). Как видно из </b>рис. 3</b>, ток через каждый свето-диод примерно в 10 раз больше тока нагрузки источника опорного напряжения.
Возможна подача опорного напряжения, например, 10 В от внешнего источника (рис. 4). В этом случае диапазон входного напряжения составляет 0… 10 В, а при указанном на схеме сопротивлении резистора R3, так же, как и для варианта по схеме на рис. 2, номинальный ток через светодиоды равен 10 мА.


Установка необходимого напряжения внутреннего источника проиллюстрирована на рис. 5. Как уже указывалось выше, напряжение питания микросхемы должно по крайней мере на 2 В превышать напряжение опорного источника. Если напряжение на выводе 4 микросхемы (UH) установить отличным от нуля, можно получить растянутую линейную шкалу — от UH до UB. Такая схема включения проиллюстрирована на
рис. 6.
Напряжение на входе UB составляет около 1,2 В, а на входе UH подстроечным резистором R3 это может быть установлено в пределах O…UB. Если его выбрать равным 2/3 от UB, т. е. 0,8 В, а коэффициент передачи делителя R1R2 подстроенным резистором R2 установить 0,08, то диапазон индицируемых уровней составит 10,5… 15 В, точнее первому включившемуся светодиоду соответствует напряжение 10,5 В. последнему — 15 В.

Вариант получения аналогичной шкалы в вольтметре для измерения напряжения бортовой сети автомобиля приведен на рис. 7. В этом случае напряжения верхнего UB = 3,6 В и нижнего уровня UH= 2,4 В устанавливаются подстроенным резистором R4, а коэффициент передачи входного сигнала на вход UBX микросхемы, равный 0,24, — резистором R2.
Во всех рассмотренных выше вариантах индикаторов вход 9 управления «столбик/точка» был никуда не подключен, что обеспечивало индикацию в режиме «точка». Если желательна индикация «столбиком», как уже указывалось выше, вход 9 следует подключить к входу для подачи напряжения питания на микросхему (вывод 3). Однако при включении всех десяти светодиодов существенно увеличивается мощность, рассеиваемая на микросхеме, поэтому следует произвести ее контрольный расчет. Тепловое сопротивление корпуса составляет 55 °С/Вт, максимальная температура кристалла — 100 °С, что допускает максимальную мощность 1365 мВт при температуре окружающей среды 25 °С, 1100 мВт — при 40 °С, 730 мВт — при 60 °С. Если задаться током 10 мА через каждый светодиод, то суммарный ток через 10 включенных светодиодов будет 100 мА и при температуре 40 °С напряжение на выходах микросхемы не должно превышать 11 В, а напряжение питания цепей светодиодов — 12,5 В.
Если нужен больший ток через светодиоды, можно уменьшить напряжение питания светодиодов вплоть до 3 В, при этом питание микросхемы можно осуществлять от источника с большим напряжением. В случае, когда применение двух источников по каким-либо причинам неприемлемо, можно последовательно с каждым светодиодом включить ограничительный резистор, как это показано на рис. 8. Для формирования «столбика» можно все све-тодиоды соединить последовательно, а микросхему перевести в режим «точка» (рис. 9). Напряжение питания в этом случае должно определяться исходя из того, что падение напряжения на каждом светодиоде около 2 В, почти столько же должно быть на выходе 10 микросхемы, когда включены все светодиоды.
Последовательное включение свето-диодов в режиме «точка» позволяет получить интересный вариант построения индикатора. В качестве примера на рис. 10 приведена возможная схема устройства. Если светодиоды HL1—HL4 установить желтого цвета свечения (мало), HL5—HL8 — зеленого (норма), HL9, HL10— красного (перегрузка), одного взгляда на индикатор будет достаточно для оценки измеряемого параметра. Число светодиодов в каждой цепочке, число цепочек и цвета светодиодов могут быть и другими, соответствующими поставленной задаче. Такой вариант с использованием микросхемы К1003ПП1 описан автором в статье [1].

Напряжение питания микросхемы должно находиться в пределах 3…25 В. Напряжение питания светодиодов должно быть не менее 3 В и не более напряжения питания микросхемы. Источник питания микросхемы в непосредственной близости от нее должен быть зашунти-рован оксидным танталовым конденсатором емкостью не менее 2,2 мкФ или алюминиевым 10 мкФ. Возможно питание цепи светодиодов выпрямленным неотфильтрованным напряжением частотой 50 Гц, однако необходимо подключение к этой цепи такого же блокировочного конденсатора, как и к микросхеме.

При необходимости индикации числа уровней, большего 10, можно использовать несколько микросхем, соединив их каскадно, допустимо соединение до пяти микросхем. Возможный вариант соединения двух микросхем LM3914 приведен на рис. 11, следует обратить внимание на следующее. Источник опорного напряжения микросхемы DA1 работает в обычном режиме и нагружен на резистор R3, что обеспечивает ток 10 мА через подключенные к этой микросхеме светодиоды. Минусовый вывод источника микросхемы DA2 подключен к плюсовому выводу первого источника и обеспечивает между входами UB и UH микросхемы DA2 напряжение 1,2 В, «поднятое» вверх на 1,2 В. Источник микросхемы DA2 нагружен на резистор R4, что задает ток через светодиоды, подключенные к этой микросхеме, той же величины, что и через светодиоды DA1.
Для обеспечения режима «столбик» достаточно выводы 9 каждой микросхемы соединить с выводами 3. Сложнее с режимом «точка», для него необходимо гашение светодиода HL10 при включении любого из светодиодов HL11— HL20. Сигнал о необходимости гашения HL10 поступает с выхода 1 DA2 на вход 9 DA1. Если включен любой из светодиодов HL11—HL20, падение напряжения на HL1 составляет не менее 1 В, поскольку через него проходит или рабочий ток светодиода, или специально формируемый микросхемой DA2 ток порядка 150 мкА (допуск— 60…450мкА), не вызывающий заметного свечения обычных (не супе-рярких) светодиодов. Это падение сравнивается специальным компаратором микросхемы DA1 с напряжением питания светодиодов. Для подачи этого напряжения на второй вход компаратора, соединенный с выводом 11 (выход 9) DA1, служит резистор R5.
Делитель напряжения микросхемы имеет очень хорошую точность, однако для реализации потенциальных возможностей микросхемы следует тщательно подойти к разводке цепей общего провода. Ток вывода 2, который в режиме «столбик» может доходить до 300 мА, не должен протекать по проводникам, через которые подключаются нижний вывод резистивного делителя микросхемы (вывод UH)f источник входного сигнала и минус источника опорного напряжения. В режиме «столбик» по проводнику, соединяющему выводы 9 и 3, не должны протекать токи светодиодов.
Для четкой работы индикатора рекомендуется «цену деления» устанавливать не менее 20 мВ в режиме «столбик» и 50 мВ в режиме «точка».


Схема интересного варианта индикатора двуполярного напряжения приведена на рис. 12. Микросхема DA1 работает практически в стандартном режиме и формирует светящийся «столбик», высота которого пропорциональна положительному входному напряжению.
Микросхема DA2 также работает в режиме «столбик», но включена необычно. Все светодиоды, подключенные к ее выходам, получают питание через резисторы R6—R15 и гаснут при включении соответствующих выходов микросхемы. На нижний вывод UH встроенного делителя подано напряжение -1,32 В со стабилизатора на микросхеме DA3. В результате на верхнем выводе делителя UB микросхемы DA2 формируется уровень около -0,12 В, и при нулевом или положительном напряжении на входе этой микросхемы все выходы микросхемы включены и свето-диоды, подключенные к ее выходам, погашены.
При подаче на вход индикатора отрицательного напряжения, увеличивающегося по абсолютной величине, вначале выключается выход 10 и зажигается светодиод HL11, затем поочередно еще и HL12—HL20, что формирует «столбик», высота которого пропорциональна модулю отрицательного напряжения на входе.
Для обеспечения функционирования микросхем при отрицательных входных сигналах на выводы микросхем 0В для подачи минуса питания подано то же напряжение -1,32 В. Точная подстройка этого напряжения производится резистором R5.
Ток через светодиоды HL1—HL10 определяется резистором R1 и составляет около 10 мА, примерно такой же ток течет через резисторы R6—R15 и обеспечивает необходимую яркость свето-диодов HL11—HL20. Поскольку при включении выходов микросхемы DA2 напряжение на ее выходах составляет около -1 В, ток через резисторы R6— R15 увеличивается почти до 14 мА, что и определяет выбор сопротивления резистора R2.
Схема на рис. 13 иллюстрирует вариант построения вольтметра с растянутой шкалой для измерения отклонения напряжения на входе от номинального +5 В. Цена деления вольтметра — 120 мВ, полный диапазон — 4,46…5,54 В. Выходное напряжение опорного источника 1,2 В делителем R1R2 уменьшается до необходимого 1,08 В, подстроенным резистором R1 устанавливается его точное значение, а резистором R4 — начальное напряжение шкалы Uн.
Индикатор может работать как в режиме «точка», так и в режиме «столбик». Выбор режима осуществляется переключателем SA1. Светодиоды шкалы целесообразно установить разного цвета свечения, например, HL4—HL7 — зеленого; HL3, HL8 — желтого; HL1, HL2, HL9, HL10 — красного, что обеспечит эффективную индикацию отклонения напряжения от +5 В.

Схема на рис. 13 также иллюстрирует упоминавшуюся ранее возможность питания светодиодов от нестабилизиро-ванного и нефильтрованного источника питания. Конденсатор С2 служит для обеспечения устойчивой работы микросхемы.
Индикатор по схеме на рис. 14 обеспечивает интересный эффект, который можно назвать «восклицательный знак». Микросхема работает в режиме «точка» и при нулевом напряжении на входе UBX все светодиоды погашены. Входной сигнал в диапазоне 0…1.2 В подается на этот вход микросхемы через резистор R2, вход зашунтирован конденсатором С2. Конденсатор периодически разряжается транзистором VT1, на базу которого подаются импульсы с частотой 1 кГц и длительностью 100 мкс. Напряжение на входе имеет вид импульсов длительностью 900 мкс по основанию с экспоненциально затянутым фронтом с постоянной времени R2C2 = 200 мкс. В результате ярко светится светодиод HL1 (он должен быть установлен ниже HL2) и светодиод, соответствующий входному напряжению. Во время прохождения фронта импульса светятся и промежуточные светодиоды, причем с тем большей яркостью, чем выше по рис. 14 светодиод расположен, и возникает упомянутый выше эффект.
Индикатор, схема которого приведена на рис. 15, при малых уровнях входного сигнала работает в режиме «точка», поскольку транзистор VT1 закрыт и на управляющий вход CfT через делитель R3VD1R4 подается напряжение, примерно на 0,7 В ниже напряжения питания. Когда включается светодиод HL10, открывается транзистор VT1, и напряжение на входе СЯ становится близким к напряжению на выводе +ипит. Микросхема переходит в режим «столбик» и вспыхивает вся шкала, привлекая к себе внимание. Резистор R2 позволяет регулировать яркость свечения светодиодов.
Очевидно, что точку соединения резисторов R5 и R6 можно подключить к любому из выходов микросхемы и переход в режим «столбик» будет происходить при включении соответствующего светодиода.

На рис. 16 приведена схема индикатора, работающего в режиме «столбик». Его особенностью является то, что при зажигании светодиода HL10 отрицательный перепад напряжения с выхода 10 микросхемы через конденсатор С2 и резистор R2 проходит на выход источника опорного напряжения +UREF и нагружает его. В результате яркость свечения светодиодов резко увеличивается и, как и в предыдущем варианте включения, привлекает внимание. Длительность вспышки определяется постоянной времени C2R2 и составляет около 50 мс. Так же, как и в варианте по схеме на рис. 15, элементы R2—R4, С2 могут быть подключены к любому из светодиодов индикатора.

Как указывалось выше, гашение светодиодов и их зажигание происходят относительно плавно. При необходимости можно обеспечить резкое переключение светодиодов, схема возможного варианта индикатора с резким переключением, работающего в режиме «столбик», приведена на рис. 17— Дополнительные по сравнению со стандартным включением элементы DA2, R2—R5, С2 вводят положительную обратную связь в компараторы микросхемы. Рассмотрим работу индикатора подробнее.
Если на входе UBX микросхемы нулевое напряжение, все светодиоды погашены, микросхема DA2, являющаяся стабилизатором отрицательного напряжения 1,2 В (отечественный аналог — КР142ЕН18А), обеспечивает на резисторе R5 напряжение 1,2 В, а ее потребляемый по входному выводу ток составляет около 110 мА. Этот ток создает падение напряжения на резисторе R2 около 300 мВ, и, поделенное делителем R3R4 до уровня 25 мВ, оно подается на вход UH микросхемы DA1. Это поднимает пороги переключения компараторов, управляющих светодиодами HL1— HL10, на такую же величину.
При повышении входного напряжения включается светодиод HL1. В процессе его включения ток через светодиод HL1 начинает протекать через резистор R5, и потребляемый микросхемой DA2 ток уменьшается. Это уменьшает падение напряжения на R2 и R4 и снижает порог переключения компаратора, замыкая цепь положительной обратной связи, светодиод HL1 включается скачком. При дальнейшем увеличении входного напряжения также скачком поочередно включаются остальные светодиоды. При уменьшении входного напряжения также резко светодиоды будут выключаться, гистерезис каждого порога составит 0,5… 1 мВ.

Основное отличие микросхемы LM3915 от ранее рассмотренной LM3914 заключается в номиналах встроенного делителя напряжения, что обеспечивает логарифмическую шкалу индикатора (см. табл. 1 ). Суммарное сопротивление резисторов делителя и точность порогов микросхемы приведены в табл. 3, остальные параметры указанных микросхем совпадают.
Простейший вариант построения логарифмического индикатора мощности, подаваемой на акустическую систему (АС), проиллюстрирован на рис. 18. Входной сигнал с контролируемой АС через делитель напряжения R1R2 подается непосредственно на сигнальный вход UBX микросхемы. Опорное напряжение выбором резисторов R3 и R4 установлено равным 8,65 В, что обеспечивает индикацию указанных на рис. 18 уровней при установке резистора R1 необходимого номинала в соответствии с сопротивлением АС.

Индикатор работает в режиме «точка» с током через каждый светодиод около 30 мА. Поскольку на входе индикатора напряжение переменное, светящиеся светодиоды образуют столбик с неравномерной яркостью, по которому можно оценить как среднюю мощность на АС, так и ее амплитудное значение.
Более точный индикатор среднего или амплитудного значения можно построить с использованием выпрямителя входного сигнала. Если микросхема используется при напряжении опорного источника 10 В, пороговое напряжение для уровня -27 дБ составляет 0,447 В (см. табл. 1) и простейший выпрямитель на кремниевом диоде с «пяткой» 0,6 В даст слишком большую погрешность. Схема простого пикового детектора, обеспечивающего удовлетворительную точность в диапазоне до -30 дБ при полной шкале 10 В, приведена на рис. 19. «Пятку» диода компенсирует напряжение UБЭ транзистора VT1.
Для получения большей точности в широком диапазоне входных напряжений необходимо применять активные выпрямители с использованием ОУ. Схема несложного однополупериодного выпрямителя приведена на рис. 20. Конденсатор фильтра С2 заряжается через резистор R3 и разряжается через R2 и R3, поэтому в зависимости от соотношения номиналов этих резисторов устройство может выполнять роль как выпрямителя пикового значения (номиналы указаны на рис. 20), так и среднего (номиналы резисторов R2 и R3 надо поменять местами). Этот выпрямитель вполне работоспособен в диапазоне уровней входного сигнала 60 дБ.

Для точного двухполупериодного выпрямления и сглаживания можно использовать выпрямитель среднего значения, схема которого приведена на рис. 21. При установке резисторов R1—R4 с допуском 1 % усиление положительной и отрицательной полуволн различается не более чем на 0,5 дБ. Постоянная времени усреднения определяется произведением R5C2. Небольшая модификация выпрямителя (рис. 22) обеспечивает выделение информации о пиковом значении входного сигнала. Поскольку сглаживающий конденсатор не буферизирован, этот выпрямитель, так же, как и выпрямители по схемам на рис. 19 и 20, можно нагружать только на нагрузку с большим входным сопротивлением. Микросхема LM3915 вполне соответствует необходимому требованию.
Для выпрямления входного сигнала можно применять специализированные микросхемы.

Для построения индикаторов с более широким диапазоном, чем 27 дБ, можно применять каскадирование микросхем. Простейший вариант соединения двух микросхем показан на рис. 23. Опорное напряжение микросхемы DA2 устанавливается подстроечным резистором R4 и составляет 10 В, микросхема работает в стандартном режиме. Для микросхемы DA1 опорное напряжение — 316 мВ, оно подстраивается резистором R1. Входной сигнал подается параллельно на входы обеих микросхем DA1 и DA2. Недостатком такого метода соединения микросхем является то, что порог для уровня включения светодиода -57 дБ составляет 14 мВ и может иметь приводящее к значительной ошибке смещение ±10 мВ.
Схема более точного варианта каскадирования микросхем приведена на рис. 24. Опорное напряжение обеих микросхем одинаково и составляет 10 В. Входной сигнал находится в диапазоне 0…10 В и на микросхему DA2 подается непосредственно, а на DA1 — после предварительного усиления в 31,6 раза операционным усилителем DA3. Естественно, что он ограничивается в ОУ DA3 и не может существенно превышать 10 В. Если резисторы R4 и R5 использовать с допуском ±1 %, подстройки коэффициента усиления не потребуется. Однако, смещение нуля ОУ DA3 может внести значительную погрешность, и его коррекция, как правило, необходима. Подстройка нуля может быть единой для ОУ усилителя DA3 и ОУ, входящих в состав выпрямителя входного сигнала.
Принципиально можно соединить три микросхемы LM3915 аналогично рис. 24 и расширить диапазон индикации до 90 дБ, однако при этом придется проявить особую тщательность при усилении сигнала 0,5 мВ. Может потребоваться подстройка нуля в различных каскадах и разделение общего провода цепей питания и сигнала.
Некоторые замечания по установке тока светодиодов. В приведенном на рис. 25 стандартном варианте формирования опорного напряжения выходной ток по выводу 7 складывается из тока делителя R1R2 и тока через внутренний делитель микросхемы, номинальное сопротивление которого составляет 22 кОм. При опорном напряжении 10 В ток через внутренний делитель составляет около 450 мкА, это увеличивает ток через каждый включенный светодиод на 4,5 мА, что следует обязательно учитывать.
На рис. 26 представлена схема раздельной подстройки опорного напряжения (подстроечный резистор R3) и тока через светодиоды (резистор R5). Диапазон регулировки тока через светодиоды для указанных номиналов резисторов составляет 9…28 мА. Аналогичная схема раздельной регулировки для случая соединения двух микросхем приведена на рис. 27.

Интересная схема нуль-индикатора на микросхемах LM3915 приведена на рис. 28. Его особенностью является повышение чувствительности по мере приближения к нулевому уровню. Микросхема DA2 работает в обычном режиме при опорном напряжении 1,25 В. При входном сигнале, близком к верхнему уровню шкалы, шаг индикации примерно равен 360 мВ, а при приближении к нулю — около 20 мВ. Для подачи на вход микросхемы DA1 входное напряжение инвертируется каскадом на ОУ DA3, в результате чего и образуется нуль-индикатор. За счет подачи на вход UH обеих микросхем небольшого отрицательного напряжения можно регулировать чувствительность индикатора вблизи нуля и даже менять характер индикации, например, при нулевом напряжении на входе можно добиться или гашения свето-диодов, подключенных к выводам 1 микросхем, или их зажигания.



www.drive2.ru

Светодиодный индикатор уровня сигнала звука на LM3915

LM3915 – интегральная микросхема (ИМС) производства компании Texas Instruments, реагирует на изменение входного сигнала и выдает сигнал на один или сразу несколько своих выходов. Благодаря своей конструктивной особенности, ИМС получила широкое распространение в схемах индикаторов на светодиодах. Так как светодиодный индикатор на основе LM3915 работает по логарифмической шкале, он нашёл практическое применение в отображении и контроле уровня сигнала в усилителях звуковой частоты.

Не стоит путать LM3915 с её родственниками LM3914 и LM3916, которые имеют аналогичное расположение и назначение выводов. ИМС серии 3914 обладает линейной характеристикой и идеальна для измерения линейных величин (ток, напряжение), а ИМС серии 3916 является более универсальной и способна управлять нагрузкой разного типа.

Краткое описание LM3915

Блок-схема LM3915 состоит из десяти однотипных операционных усилителей, работающих по принципу компаратора. Прямые входы ОУ подключены через цепочку из резистивных делителей с различными номиналами сопротивлений. Благодаря этому светодиоды в нагрузке зажигаются по логарифмической зависимости. На инверсные входы приходит входной сигнал, который обрабатывается буферным ОУ (вывод 5).

Внутреннее устройство ИМС включает маломощный интегральный стабилизатор, подключенный к выводам 3, 7, 8 и устройство для задания режима свечения (вывод 9). Диапазон питающего напряжения составляет 3–25В. Величину опорного напряжения можно задать в пределах от 1,2 до 12В при помощи внешних резисторов. Вся шкала соответствует уровню сигнала в 30 дБ с шагом 3 дБ. Выходной ток можно задать от 1 до 30 мА.

Схема индикатора звука и принцип её действия

Как видно из рисунка, принципиальная электрическая схема индикатора уровня звука состоит из двух конденсаторов, девяти резисторов и микросхемы, нагрузкой для которой служат десять светодиодов. Для удобства подключения питания и аудиосигнала её можно дополнить двумя разъёмами под пайку. Собрать такое простое устройство под силу любому, даже начинающему, радиолюбителю.

Типовое включение предусматривает питание от источника 12В, которое поступает на третий вывод LM3915. Оно же, через токоограничивающий резистор R2 и два фильтрующих конденсатора С1 и С2, идёт на светодиоды. Резисторы R1 и R8 служат для снижения яркости последних двух красных светодиодов и являются необязательными. 12В также приходит на перемычку, которая управляет режимом работы ИМС через вывод 9. В разомкнутом состоянии схема работает в режиме «точка», т.е. происходит свечение одного светодиода, соответствующего входному сигналу. Замыкание перемычки переводит схему в режим «столбик», когда уровень входного сигнала пропорционален высоте светящегося столбца.

Резистивный делитель, собранный на R3, R4 и R7 ограничивает уровень входного сигнала. Более точная настройка осуществляется многооборотным подстроечным резистором R4. Резистор R9 задает смещение для верхнего уровня (вывод 6), точное значение которого определяется сопротивлением R6. Нижний уровень (вывод 4) присоединяется к общему проводу. Резистор R5 (вывод 7,8) увеличивает величину опорного напряжения и влияет на яркость светодиодов. Именно R5 задаёт ток через светодиоды и рассчитывается по формуле:

R5=12,5/ILED, где ILED – ток одного светодиода, А.

Индикатор уровня звука работает следующим образом. В момент, когда входной сигнал преодолеет порог нижнего уровня плюс сопротивление на прямом входе первого компаратора, засветится первый светодиод (вывод 1). Дальнейшее нарастание звукового сигнала приведёт к поочерёдному срабатыванию компараторов, о чём даст знать соответствующий светодиод. Во избежание перегрева корпуса ИМС, не следует превышать ток LED более 20 мА. Все-таки это индикатор, а не новогодняя гирлянда.

Печатная плата и детали сборки

Печатную плату индикатора уровня звука в формате lay можно скачать здесь. Она имеет размеры 65×28 мм. Для сборки требуются прецизионных деталей. Резисторы типа МЛТ-0,125Вт:

  • R1, R5 R8 – 1 кОм;
  • R2 – 100 Ом;
  • R3 – 10 кОм;
  • R4 – 50 кОм, любой подстроечный;
  • R6 – 560 Ом;
  • R7 – 10 Ом;
  • R9 – 20 кОм.

Конденсаторы С1, С2 – 0,1 мкФ. ИМС LM3915 рекомендуется запаивать не напрямую, а через специальную панельке для микросхемы. В нагрузке можно применить ультраяркие LED любого цвета свечения, вплоть до фиолетового. Но это уже личные эстетические предпочтения. Для отображения стереосигнала потребуются две одинаковые платы с независимыми входами. Более подробные данные о LM3915 можно найти в техническом описании здесь.

Работоспособность данного индикатора доказана на практике многими радиолюбительскими кружками и по-прежнему выпускается в виде наборов МастерКит.

Читайте так же

ledjournal.info

Универсальный светодиодный индикатор уровня сигнала

Приветствую, Самоделкины!
Сегодня мы вместе с автором YouTube канала «Radio-Lab» будем собирать радиоконструктор.

Это светодиодный индикатор уровня звукового сигнала. Предназначен он для визуального контроля уровня звукового сигнала, что облегчает контроль устройства, например, чтобы сигнал на входе или выходе усилителя звука или микрофонного усилителя не превышал определенного уровня. Это очень удобно делать с помощью индикатора уровня сигнала. Еще это визуально выглядит красиво. Такие индикаторы можно часто увидеть на заводских устройствах.

Чаще всего это прыгающие светящиеся столбики или двигающиеся стрелки. Стрелочные индикаторы стоят дорого, потому пока будем собирать более дешевую светодиодную версию. Набор идет в запаянном пакете, аккуратно разрезаем и достаем содержимое пакета.


В наборе идет печатная плата, провода и разные радиодетали. Для удобства разложим все детали, их немного.
Инструкции в комплекте нет. С виду печатная плата отличного качества, что и куда паять есть на самой плате.


Основой этого модуля являются 2 микросхемы.

Одна - это операционный усилитель UA741 и микросхема драйвера LM3915 с логарифмической шкалой на 10 выходов, диапазон 30 дБ по 3 дБ на шаг. Это популярная микросхема, информация по ней есть в интернете.


В наборе для установки микросхем есть панельки, удобно на случай замены или тестов.

Ну а теперь можно приступить к сборке. В первую очередь будем устанавливать постоянные резисторы. Чтобы узнать номинал детали автор использует вот такой тестер радиодеталей.


Это удобно. Номинал резистора составил 2,2 кОм. А теперь находим по маркировке место его установки на плату.
Примеряем резистор, загибаем ножки, устанавливаем, откусываем лишнее и припаиваем детали на плату.


В наборе идут 3 многослойных конденсатора, номиналы указаны на корпусе. Смотрим по плате и устанавливаем их на свои места.


Желтые конденсаторы установлены. Теперь будем паять диоды и стабилитроны. Они одинаковые и легко напутать, нужно внимательно смотреть маркировку на корпусе детали.

Смотрим маркировку и берем 2 диода. Находим их место на плате. Обязательно нужно соблюдать полярность, для этого есть метки на корпусе и плате.


Вот опять одинаковые диод и стабилитрон.

Опять же на корпусе есть маркировка и по ней нужно искать аналогичные номера на плате. Вот на корпусе этой детали есть надпись 6,2В - это стабилитрон. Ищем на плате и ставим его на свое место.

Осталось установить и запаять стабилитрон, который побольше. Диоды и стабилитроны установлены. На плате есть перемычка «J», согнем кусочек провода и установим данную перемычку.


Электролитические конденсаторы одинаковые, нужно просто соблюдать полярность установки (для этого есть метки на корпусе детали и на плате).

По рисунку устанавливаем подстроечный резистор. По ключам устанавливаем панельки для микросхем. Есть возможность установить подстроечный резистор горизонтально - так и сделаем, так компактнее.


На плате есть место для установки 11-ти светодиодов. Более длиная ножка светодиода - это плюс. По рисунку или маркировке устанавливаем светодиод на плату. Десятый светодиод – красный.


Дальше, с уменьшением номера, используются желтые и зеленые светодиоды. Запаиваем все светодиоды на свои места.

По высоте все ровно. Далее устанавливаем по ключам микросхемы на свои места в панельки.
Еще автор допаял провода для подключения индикатора (красный и синий - плюс и минус питания, а желтый и черный – это вход для сигнала).

Ну а теперь, можно сказать, все готово. Индикатор уровня сигнала полностью собран, флюс отмыт и теперь все красиво.


На этой плате имеются 2 входа: низкоуровневой (если сигнал слабый, например, на входе усилителя) и высокоуровневый, например, если плату подключить на выход усилителя. Мы будем использовать низкоуровневый вход.

На картинке можно увидеть все характеристики по входам.

Напряжение питания платы составляет 12В. Чтобы проверить работоспособность будем питать плату от аккумулятора 12В. Если подать питание, то можно увидеть, что светодиодный столбик подпрыгивает и затухает - это уже хорошо.

Нулевой светодиод светится постоянно при наличии питания. Для подачи звукового сигнала будем использовать вот такой провод для подключения к телефону:


Желтый провод автор припаял к сигнальному звуковому проводу, а чёрный к общему проводу. Если плат две, то вторая аналогично подключается ко второму каналу. Для проведения тестов только что собранного светодиодного индикатора уровня звукового сигнала, автор решил использовать усилитель на микросхеме TDA70377 с питанием от 12В для удобства, чтобы показать, но можно взять и другой.

На вход усилителя подключаем провод линейного входа, и туда же на один из каналов подключен индикатор уровня сигнала. Провода питания индикатора подключены параллельно на провода питания усилителя.

Проверяем, если все нормально, тогда подаем питание на усилитель. Можно увидеть, что индикатор уровня заработал (индикаторный светодиод сигнализирует об этом).

Также запитан и усилитель звука. Теперь попробуем подключить телефон и включить музыку. Давайте посмотрим на работу индикатора уровня сигнала.


Теперь давайте попробуем добавить громкость на максимум.

Также на этой плате имеется настройка чувствительности. Вращением подстроечного резистора против часовой стрелки начинает засвечиваться больше светодиодов.


Это позволяет настроить плату так как это необходимо. Такая подстройка делает ее более универсальной. Если перемычку «J» снять, то плата из режима «столбик» переходит в режим «точка», тоже иногда нужная функция.


Но если вам нужны столбики, то перемычку необходимо запаять на место. Монтировать платы легко, для этого есть специально предусмотренные крепежные отверстия.


Также платы можно монтировать на стойках друг над другом по принципу бутерброда и получить, например, стереоиндикатор из двух плат, или квадро индикатор и так далее.


Вот такой вот интересный радиоконструктор. Светодиоды можно поменять на более интересные, побольше или прямоугольные. Проблем со сборкой у автора не возникло. Если все правильно, то индикатор заработает сразу. Подключается и настраивается он довольно легко, можете пробовать собирать. С использованием этой платы можно сделать красивую визуализацию, например, для усилителя, портативной колонки и многого другого, а также контролировать уровень входного и выходного сигнала. В общем дальше уже дело фантазии. Ну а на этом все. Благодарю за внимание. До новых встреч!

Видео:


Источник

Купить Kit-набор на Aliexpress

Становитесь автором сайта, публикуйте собственные статьи, описания самоделок с оплатой за текст. Подробнее здесь.

usamodelkina.ru

СВЕТОДИОДНЫЙ ИНДИКАТОР УРОВНЯ СИГНАЛА

   Этот двухканальный индикатор сигнала звука на светодиодном столбике выполнен на специализированных микросхемах LM3914. Собрал данный индикатор по 60 светодиодов на каждый канал, все диоды красного свечения (больше нравятся по яркости свечения), хотя конструкция индикатора такова, что легко можно заменить планку на свечение диодов другого цвета. Конструктивно девайс имеет 3 платы: 

  1. Плата индикаторов (сменная).

  2. Плата левого канала. 

  3. Плата правого канала.

   Уровни индикации:

  - Первый сегмент 20 mv 
  - 10 сегмент 150 mv 
  - 20 сегмент 300 mv 
  -......... 
  -......... 
  -......... 
  - 60 сегмент 900 mv 

   Калибровка производилась при помощи милливольтметра раздельно по каналам и затем уже как сравнение двух вместе. Конструктивно микросхемы стоят в панелях, для удобства замены, к примеру для логарифмического индикатора на LM3915.

Принципиальная схема индикатора уровня на LED:

Структура микросхемы LM3914:

   Ее основу составляют 10 компараторов, на инверсные входы которых через буферный ОУ подается входной сигнал, а прямые входы подключены к отводам резистивного делителя напряжения. Выходы компараторов являются генераторами втекающего тока, что позволяет подключать светодиоды без ограничительных резисторов. Индикация может производиться или одним светодиодом (режим "точка”), или линейкой из светящихся светодиодов, высота которой пропорциональна уровню входного сигнала (режим "столбик”). Входной сигнал Uвх подают на вывод 5, а напряжения, определяющие диапазон индицируемых уровней, — на выводы 4 (нижний уровень Uн) и 6 (верхний уровень Uв).

Таблица рабочих параметров микросхемы LM3914

   Ток потребления при всех горящих LED сегментах обоих каналов порядка 1,3А при питании 5В. На платах не применен входной усилитель сигнала, но чувствительность его такова, что нижний предел (первый сегмент) можно зажечь меньше чем 20 mv переменного сигнала. 


   Плата индикаторов уровня сдвоенная на 2 канала имеет размер 157х32 мм. Каждая плата канала раздельная (левый и правый) имеет размер 157х24 мм. В собраном виде конструктив имеет размеры: 157х32х45 мм. 


   В качестве настройки правильной линейности шкалы необходимо выбрать пределы нижних и верхних уровней для каждой микросхемы. Принципиально есть возможность при желании растянуть шкалу каждого канала в несколько раз при данном схемном решении. 


   Блок может быть применен как самостоятельное устройство, так и в составе с усилителем НЧ. Несколько фото собранного устройства вы видите в стате.


Видео, демонстрирующее его работу:

   За основу брал даташит и только, готовых решений в сети не нашел. Схему собрал и испытал - ГУБЕРНАТОР

   Форум по светодиодным индикаторам звука

   Обсудить статью СВЕТОДИОДНЫЙ ИНДИКАТОР УРОВНЯ СИГНАЛА

radioskot.ru

Индикатор громкости на светодиодах

Для визуализации уровня сигнала широко используют светодиодные индикаторы, построенные на архитектуре специализированных микросхем. Они применяются в самых разнообразных устройствах: индикаторы уровня входящего сигнала радиоприёмной аппаратуры, индикация уровня на усилителе звука, тестеры для отладки схем, в которых используется частотно-импульсный принцип управления нагрузками.

Принцип работы

Все индикаторы уровня построены на основе многокаскадных компараторов.

Компаратор – логический элемент, сравнивающий параметры двух входящих сигналов.

На один канал компаратора подаётся анализируемый сигнал, на второй – опорное напряжение сравнения. Если амплитуда первого выше опорного напряжения – на выходе появляется логическая единица, если ниже – логический ноль.

Работу простейшего компаратора можно продемонстрировать на микросхеме К155ЛН1, единичным кластером которой является элемент «НЕ».

Такая микросхема является простейшим логическим компаратором. При напряжении на входе от 0В до 2,4В (что соответствует логическому нулю) на выходе 2,7В, как только напряжение на входе превысит 2,4В, сигнал на выходе упадёт до ноля вольт.

Существует несколько микросхем для визуализации уровня. Наиболее многофункциональные схемы, на мой взгляд, позволяют создавать микросхемы на архитектуре lm39xx. В эту линейку входит три микросхемы: lm3914, lm3915 и lm3916. Минимальная развязка без труда позволяет создать светодиодный индикатор уровня звука своими руками даже без глубоких познаний в радиоэлектронике.

Все они представляют десяти диапазонный анализатор. Различаются способом дифференциации входного сигнала. У lm3914 это 1В, у lm3915 – 3Дб, у lm3916 — 1Дб.

Светодиодный индикатор уровня звука на lm3915

Соберём индикатор громкости на светодиодах с применением компараторов на lm3915.

Разберёмся, как работает схема.

На вход 5 поступает анализируемый сигнал, его амплитуда должна быть 10В. Для сопряжения амплитуды входящего сигнала нам потребуется транзисторный ключ. На его базу через резисторный делитель напряжения на R5 поступает анализируемый сигнал.

Логическая структура lm3915

Индикатор звука на lm3915 может работать в двух режимах индикации – «точка» и «столбик». В первом случае загорается светодиод соответствующий текущему уровню сигнала, во втором – все светодиоды от нуля до текущего уровня. Переключение режимов индикации осуществляется через переключатель между общим проводом и входом «9».

Нестандартное применение

Индикатор с применением lm3914 можно использовать в качестве компактного тестера малогабаритных батареек и аккумуляторов.

Напряжение питания такой схемы от 5В до 12В. Удобно питать от «Кроны» либо четырёх батареек ААА.

Конденсатор С1 — 50 мкФ 25В, подтягивающий резистор R1 – 1Мом. R2, R3 – по 4,7-5кОм. Диапазон измерений у схемы 1В с градацией 0,1В. R2 регулирует диапазон измерений, R3 – ток светодиодов. Если отключить выход 9, индикация будет «столбиком», но питающее элементы быстро разряжаются.

Понравилась статья? Расскажите о ней! Вы нам очень поможете:)

svetodiodinfo.ru

Светодиодный указатель уровня воды | Мастер-класс своими руками

Датчик уровня воды своими руками может сделать практически каждый, кто хоть немного умеет держать в руках паяльник. А эта статья поможет вам поэтапно, при помощи фотографий, изготовить индикатор уровня воды в баке своими руками из простых и распространённых деталей. Данное устройство работает очень хорошо и весьма надёжно в эксплуатации. При правильной сборке из исправных деталей, указанных на схеме номиналов, в дальнейшей настройке не нуждается, и будет работать сразу при подключении питания 12 вольт.
Для начала нужно разобраться со схемой уровня воды, которую мы будем изготавливать.

Схема уровень воды своими руками



Первым делом, после ознакомления с фотографией: схема уровня воды в баке своими руками, является заготовка деталей и материалов. Нам потребуется микросхема ULN2004, её можно купить в радиомагазине или в Китае, на Алиэкспресс. Цена за одну микросхему в радиомагазине и за десять на Алиэкспресс примерно равны, так что выбирайте подходящее, единственное неудобство — это то, что посылку из Китая нужно ждать около месяца или больше.

Детали собраны



Светодиоды можно использовать сигнальные любого цвета, какой Вам понравится, диаметром 4 – 5 миллиметров. Цоколёвка светодиодов и микросхемы есть на схеме.
Конденсатор C1 нужен полярный 100 микрофарад 25 вольт, или больших параметров (какой есть).
Резисторы (сопротивления) мощностью от 0.125 до 0.5 ватта или больше (чем больше мощность, тем больше габариты и будет не очень красиво, это относится и к конденсатору).
Резисторы R1 – R7 сопротивлением 47 ком (немного меньше или немного больше – не критично).
Резисторы R 8 – R14 сопротивлением 1 ком (примерно). Чем больше сопротивление, тем слабее будет светиться светодиод и наоборот, но слишком маленькое сопротивление может привести к выходу светодиода из строя.
Печатную плату можно не изготавливать, а применить макетную, как у меня, стоит копейки, особенно в Китае. Соотношение цены в радиомагазине и Китае 5 – 10 к одному.
Кабель к датчикам уровня воды можно применить любой восьми жильный сигнальный (в магазинах, где продают устройства сигнализации, есть всякий). Концы кабеля, помещаемые в воду как датчик уровня, освободить от изоляции на длину 5 – 10 миллиметров и зачищенные концы залудить (покрыть оловом при помощи паяльника) для уменьшения окисляющего действия воды на металл. Плюсовой электрод нужно изготовить из нержавейки (например, чайная ложка), а место соединения её к проводу защитить от воды при помощи клеевого пистолета. Если место контакта не защитить, то через короткое время электрохимическая реакция сожрёт. Шаг между датчиками нужно рассчитать исходя из глубины ёмкости. Если нужно измерять большую глубину воды и хочется разместить датчики чаще, то можно изготовить ещё одну или даже несколько подобных схем контроля уровня воды и разместить их последовательно в ёмкости. Конструкция датчиков может быть самой разнообразной и зависит только от Вашей фантазии, главное соблюдать общие принципы.


Клеммные колодки любые, но важно удобство подключения и использования.
Для микросхемы лучше всего применить разъём для беспаечного размещения. Это гнездо можно паять и не бояться, что перегреешь ножки, или подействует статическое электричество. Если микросхема вышла из строя, по каким – то причинам, то заменить её можно за пару секунд. Стоит такая панелька копейки.
Олово (проволока с канифолью) лучше использовать Российское. Китайское олово хорошее не встречал.
После сбора деталей нужно подумать о размещении деталей на плате. Я сделал, так как на фото, а Вы вольны расположить их по своему вкусу. Главное, чтобы расположение деталей отвечало задачам уменьшения количества перемычек и пайки, а главное удобству эксплуатации. Аккуратность в сборке схемы не последнее дело, не нужно торопиться как я и будет всё красиво. Итак, приступим.









Питание указателя уровня воды в баке можно сделать от любого аккумулятора 12 вольт (даже старого, лишь бы он давал не меньше чем 10 вольт), например, от компьютерного блока бесперебойного питания, да и продают сейчас их много всяких маломощных. Или можно на даче использовать обычные батарейки. Если их соединить последовательно 8 штук по 1.5 вольта = 12 вольт. Вполне достаточно. А если батарейки подключить через кнопку, чтобы схема работала только при нажатии на кнопку, то такого питания хватит на много лет.
Осталось только испытать указатель уровня воды в баке и тут главное не перепутать плюс с минусом. Провода питания лучше подключать разного цвета. Плюс всегда обозначается красным цветом, а минус чёрным, если к этому привыкнуть, то уже не перепутаете.

sdelaysam-svoimirukami.ru

alexxlab

Отправить ответ

avatar
  Подписаться  
Уведомление о