Waden › Блог › LED. LM317 в стабилизаторе тока светодиодов. Или как надежно запитать светодиоды чтобы стабильно работали, не моргали и не сгорали.


Всё больше распространяется мода на светодиоды, в настоящее время многие сами ставят диодные ленты (для дневного света и многого другого ).
Наткнулся на следующую статью, которой и хочу со всеми поделиться:
“В настоящее время в нашу жизнь интенсивно внедряются светодиоды. Основная проблема оказывается как из запитать. Дело в том, что главным параметром для долговечности светодиода является не напряжение его питание, а ток который по нему течет. Например, красные светодиоды по напряжению питания могут иметь разброс от 1.8 вольта до 2,6, белые от 3,0 до 3,7 вольта. Даже в одной партии одного производителя могут встречаться светодиоды с разным рабочим напряжением. Нюанс заключается в том, что светодиоды изготовленные на основе AlInGaP/GaAs (красные, желтые, зеленые — классические) довольно хорошо выдерживают перегрузку по току, а светодиоды на основе GaInN/GaN (синие, зеленые (сине-зеленые), белые) при перегрузке по току например в 2 раза живут … часа 2-3! Так, что если желаете чтобы светодиод горел и не сгорел в течении ходя бы 5 лет позаботьтесь о его питании.

Если мы устанавливаем светодиоды в цепочки (последовательное соединение) или подключаем параллельно добиться одинаковой светимости можно только если протекающий ток будет через них одинаков.

Еще хочу заострить внимание на том что светодиоды очень боятся обратного напряжения, оно очень низкое 5 — 6 вольт, импульсы обратного тока (а автомашинах) способны значительно сократить срок службы.

Значить как сделать самый простой стабилизатор тока?

Для этого берем LM317 если нужно стабилизировать ток в пределах до 1 ампера или LM317L если необходима стабилизация тока до 0,1 А. Даташит можно скачать здесь!

Так выглядят стабилизаторы LM317 с рабочим током до 1,5 А.

А так LM317L с рабочим током до 100 мА.

Для тех кто не знает Vin — это сюда подается напряжение, Vout — отсюда получаем…, а Adjust вход регулировки. В двух словах LM317 это стабилизатор с регулируемым выходным напряжением. Минимальное выходное напряжение 1,25 вольта (это если Adjust “посадить” прямо на землю) и до входного напряжения минус наши 1,25 вольта. Т.К. максимальное входное напряжение составляет 37 вольт, то можно делать стабилизаторы тока до 37 вольт соответственно.

Для того чтобы LM317 превратить в стабилизатор тока нужен всего 1 резистор!

Схема включения выглядит следующим образом:

С формулы внизу рисунка очень просто рассчитать величину резистора для необходимого тока. Т.е сопротивление резистора равно — 1,25 разделить на требуемый ток. Для стабилизаторов до 0,1 ампера мощность резистора 0,25 W вполне годиться. На токи от 350 мА до 1 А рекомендуется 2 вата. Для тех кто не хочет считать привожу таблицу резисторов на токи для широко распространенных светодиодов.

Ток (уточненный ток для резистора стандартного ряда) Сопротивление резистора Примечание
20 мА 62 Ом стандартный светодиод
30 мА (29) 43 Ом “суперфлюкс” и ему подобные
40 мА (38) 33 Ом “суперфлюкс” и ему подобные
80 мА (78) 16 Ом четырехкристальные
350 мА (321) 3,9 Ом одноватные
750 мА (694) 1,8 Ом трехватные
1000 мА (962) 1,3 Ом 5 W

А теперь пример с учетом всего выше сказанного. Сделаем стабилизатор тока для белых светодиодов с рабочим током 20 мА, условия эксплуатации автомобиль (сейчас так моден световой тюннинг…).

Для белых светодиодов рабочее напряжение в среднем равно 3,2 вольта. В автомашине (легковой) бортовое напряжение колеблется (в опять же среднем) от 11,6 вольт в режиме работы от аккумулятора и до 14,2 вольта при работающем двигателе. Для российских машин учтем выбросы в “обратке” (и в прямом направлении до 100 ! вольт).

Включить последовательно можно только 3 светодиода — 3,2*3 = 9,6 вольта, плюс 1,25 падение на стабилизаторе = 10,85. Плюс диод от обратного напряжения 0,6 вольта = 11,45 вольта.

Полученное значение 11,45 вольта ниже самого низкого напряжения в автомобиле — это хорошо! Это значит на выходе будет всегда наши 20 мА независимо от напряжения в бортовой сети автомобиля. Для защиты от выбросов положительной полярности поставим после диода супрессор на 24 вольта.

P.S. Подбирайте количество светодиодов так чтобы на стабилизаторе оставалось как можно меньше напряжения (но не меньше 1,3 вольта), это надо для уменьшения рассеиваемой мощности на самом стабилизаторе. Это особенно важно для больших токов. И не забудьте, что на токи от 350 мА и выше LMка потребует радиатор.

наша схема:

В принципе супрессор для дешевых светодиодов можно и не ставить, но диод для в автомобиле обязателен! Рекомендую его ставить даже если вы просто подключаете светодиоды с гасящим резистором.

Как рассчитывать сопротивление резистора для светодиодов я думаю описывать излишне, но если надо пишите на форуме.

Еще забыл: — по схеме, если непонятно! На К1 подаем плюс “+”, а на К2 минус (на шасси автомашины садим).”

P.S.: Я просто выложил статью, автор не известен, увы, подсказать по каждому конкретному случаю не могу!

P.P.S: Подписываемся на мой “спорткар”: www.drive2.ru/r/hyundai/875516/

www.drive2.ru

Стабилизатор тока на lm317 | AUDIO-CXEM.RU

Ток на выходе блока питания может увеличиться вследствие уменьшения сопротивления нагрузки (простой пример, короткое замыкание), также изменение тока нагрузки происходит из-за изменения напряжения питания её. Стабилизатор тока на lm317 обеспечивает стабильность тока (ограничение тока) на выходе в случаях описанных выше.

Данный стабилизатор может быть применён в схемах питания светодиодов, зарядных устройствах (ЗУ), лабораторных источников питания и так далее.

Если, к примеру, рассматривать светодиоды, то необходимо учитывать тот факт, что для них нужно ограничивать ток, а не напряжение. На кристалл можно подать 12В и он не сгорит, при условии, что ток будет ограничен до номинального (в зависимости от маркировки и типа светодиода).

Основные технические характеристики LM317

Максимальный выходной ток 1.5А

Максимальное входное напряжение 40В

Выходное напряжение от 1.2В до 37В

Более подробные характеристики и графики можно посмотреть в даташите на стабилизатор.

Схема стабилизатора тока на lm317

Плюс данного стабилизатора в том, что он является линейным и не вносит высокочастотные помехи, например как некоторые импульсные стабилизаторы. Минусом является низкий КПД (в счёт своей линейности), и поэтому происходит значительный нагрев кристалла микросхемы. Как вы уже поняли, микросхему необходимо обеспечить хорошим радиатором.

За величину тока стабилизации (ограничения) отвечает резистор R1. С помощью данного резистора можно выставить ток стабилизации, например 100мА, тогда даже при коротком замыкании на выходе схемы будет протекать ток, равный 100мА.

Сопротивление резистора R1 рассчитывается по формуле:

R1=1,2/Iнагрузки

Изначально необходимо определиться с величиной тока стабилизации. Например, мне необходимо ограничить ток потребления светодиодов равный 100мА. Тогда,

R1=1,2/0,1A=12 Ом.

То есть, для ограничения тока 0,1A необходимо установить резистор R1=12 Ом. Проверим на железе… Для проверки собрал схему на макетной плате. Резистор на 12 Ом искать было лень, зацепил в параллель два по 22 Ома (были под рукой).

Выставил напряжение холостого хода, равное 12В (можно выставить любое). После чего, я замкнул выход на землю, и стабилизатор LM317 ограничил ток 0,1А. Расчеты подтвердились.

При увеличении или уменьшении напряжения ток остается стабильным.

Резистор можно припаять на выводы микросхемы, но не стоит забывать, что через резистор протекает весь ток нагрузки, поэтому при больших токах нужен резистор повышенной мощности.

Если использовать данный стабилизатор тока на LM317 в лабораторном блоке питания, то необходимо устанавливать переменный резистор проволочного типа, простой переменный резистор не выдержит токи нагрузки протекающие через него.

Для ленивых представляю таблицу значений резистора R1 в зависимости от нужного тока стабилизации.

ТокR1 (стандарт)
0.02551 Ом
0.0524 Ом
0.07516 Ом
0.113 Ом
0.158.2 Ом
0.26.2 Ом
0.255.1 Ом
0.34.3 Ом
0.353.6 Ом
0.43 Ома
0.452.7 Ома
0.52.4 Ома
0.552.2 Ома
0.62 Ома
0.652 Ома
0.71.8 Ома
0.751.6 Ома
0.81.6 Ома
0.851.5 Ома
0.91.3 Ома
0.951.3 Ома
11.3 Ома

Таким образом, применив галетный переключатель и несколько резисторов, можно собрать схему регулируемого стабилизатора тока с фиксированными значениями.

 

Даташит на LM317 СКАЧАТЬ

Похожие статьи

audio-cxem.ru

Стабилизатор тока на lm317, lm338, lm350 для светодиодов

В последнее время интерес к схемам стабилизаторов тока значительно вырос. И в первую очередь это связано с выходом на лидирующие позиции источников искусственного освещения на основе светодиодов, для которых жизненно важным моментом является именно стабильное питание по току. Наиболее простой, дешевый, но в то же время мощный и надежный токовый стабилизатор можно построить на базе одной из интегральных микросхем (ИМ): lm317, lm338 или lm350.

Datasheet по lm317, lm350, lm338

Прежде чем перейти непосредственно к схемам, рассмотрим особенности и технические характеристики вышеприведенных линейных интегральных стабилизаторов (ЛИС).

Все три ИМ имеют схожую архитектуру и разработаны с целью построения на их основе не сложных схем стабилизаторов тока или напряжения, в том числе применяемых и со светодиодами. Различия между микросхемами кроются в технических параметрах, которые представлены в сравнительной таблице ниже.

 LM317LM350LM338
Диапазон значений регулируемого выходного напряжения1,2…37В1,2…33В1,2…33В
Максимальный показатель токовой нагрузки1,5А
Максимальное допустимое входное напряжение40В35В35В
Показатель возможной погрешности стабилизации~0,1%~0,1%~0,1%
Максимальная рассеиваемая мощность*15-20 Вт20-50 Вт25-50 Вт
Диапазон рабочих температур0° – 125°С0° – 125°С0° – 125°С
DatasheetLM317.pdfLM350.pdfLM338.pdf

* — зависит от производителя ИМ.

Во всех трех микросхемах присутствует встроенная защита от перегрева, перегрузки и возможного короткого замыкания.

Lm317, самая распространенная ИМ, имеет полный отечественный аналог — КР142ЕН12А.

Выпускаются интегральные стабилизаторы (ИС) в монолитном корпусе нескольких вариантов, самым распространенным является TO-220. Микросхема имеет три вывода:

  1. ADJUST. Вывод для задания (регулировки) выходного напряжения. В режиме стабилизации тока соединяется с плюсом выходного контакта.
  2. OUTPUT. Вывод с низким внутренним сопротивлением для формирования выходного напряжения.
  3. INPUT. Вывод для подачи напряжения питания.

Схемы и расчеты

Наибольшее применение ИС нашли в источниках питания светодиодов. Рассмотрим простейшую схему стабилизатора тока (драйвера), состоящую всего из двух компонентов: микросхемы и резистора. На вход ИМ подается напряжение источника питания, управляющий контакт соединяется с выходным через резистор (R), а выходной контакт микросхемы подключается к аноду светодиода.

Если рассматривать самую популярную ИМ, Lm317t, то сопротивление резистора рассчитывают по формуле: R=1,25/I0 (1), где I0 – выходной ток стабилизатора, значение которого регламентируется паспортными данными на LM317 и должно быть в диапазоне 0,01-1,5 А. Отсюда следует, что сопротивление резистора может быть в диапазоне 0,8-120 Ом. Мощность, рассеиваемая на резисторе, рассчитывается по формуле: PR=I02×R (2). Включение и расчеты ИМ lm350, lm338 полностью аналогичны.

Полученные расчетные данные для резистора округляют в большую сторону, согласно номинальному ряду.

Постоянные резисторы производятся с небольшим разбросом значения сопротивления, поэтому получить нужное значение выходного тока не всегда возможно. Для этой цели в схему устанавливается дополнительный подстроечный резистор соответствующей мощности. Это немного увеличивает цену сборки стабилизатора, но гарантирует получение необходимого тока для питания светодиода. При стабилизации выходного тока более 20% от максимального значения, на микросхеме выделяется много тепла, поэтому ее необходимо снабдить радиатором.

Онлайн калькулятор lm317, lm350 и lm338


Допустим, необходимо подключить мощный светодиод с током потребления 700 миллиампер. Согласно формуле (1) R=1,25/0,7= 1.786 Ом (ближайшее значение из ряда E2—1,8 Ом). Рассеиваемая мощность по формуле (2) будет составлять: 0.7×0.7×1.8 = 0,882 Ватт (ближайшее стандартное значение 1 Ватт).

На практике, для предотвращения нагрева, мощность рассеивания резистора лучше увеличить примерно на 30%, а в корпусе с низкой конвекцией на 50%.

Кроме множества плюсов, стабилизаторы для светодиодов на основе lm317, lm350 и lm338 имеют несколько значительных недостатков – это низкий КПД и необходимость отвода тепла от ИМ при стабилизации тока более 20% от максимального допустимого значения. Избежать этого недостатка поможет применение импульсного стабилизатора, например, на основе ИМ PT4115.

Читайте так же

ledjournal.info

Регулируемый стабилизатор напряжения на LM317

Содержание страницы

В случае если в схеме нужен стабилизатор на какое-то не стандартное напряжение, то прекрасное решение использование популярного интегрального стабилизатора LM317T с характеристиками:


  • способен работать в диапазоне выходных напряжений от 1,2 до 37 В;
  • выходной ток может достигать 1,5 А;
  • максимальная рассеиваемая мощность 20 Вт;
  • встроенное ограничение тока, для защиты от короткого замыкания;
  • встроенную защиту от перегрева.

Описание

У микросхемы LM317T схема включения в минимальном варианте предполагает наличие двух резисторов, значения сопротивлений которых определяют выходное напряжение, входного и выходного конденсатора.

У стабилизатора два важных параметра: опорное напряжение (Vref) и ток вытекающий из вывода подстройки (Iadj).
Величина опорного напряжения может меняться от экземпляра к экземпляру от 1,2 до 1,3 В, а в среднем составляет 1,25 В. Опорное напряжение это то напряжение которое микросхема стабилизатора стремиться поддерживать на резисторе R1. Таким образом если резистор R2 замкнуть, то на выходе схемы будет 1,25 В, а чем больше будет падение напряжения на R2 тем больше будет напряжение на выходе. Получается что 1,25 В на R1 складываться с падением на R2 и образует выходное напряжение.

Второй параметр – ток вытекающий из вывода подстройки по сути является паразитным, производители обещают что он в среднем составит 50 мкА, максимум 100 мкА, но в реальных условиях он может достигать 500 мкА. Поэтому чтобы обеспечить стабильное выходное напряжение приходиться через делитель R1-R2 гнать ток от 5 мА. А это значит что сопротивление R1 не может больше 240 Ом, кстати именно такое сопротивление рекомендуют в схемах включения из datasheet.

Первый раз, когда я посчитал делитель для микросхемы по формуле из LM317T datasheet, я задавался током 1 мА, а потом я очень долго удивлялся почему напряжение реальное напряжение отличается. И с тех пор я задаюсь R1 и считаю по формуле:
R2=R1*((Uвых/Uоп)-1).
Тестирую в реальных условиях и уточняю значения сопротивлений R1 и R2.
Посмотрим какие должны быть для широко распространенных напряжений 5 и 12 В.

 R1, ОмR2, Ом
LM317T схема включения 5v120360
LM317T схема включения 12v2402000

 

Но я бы посоветовал использовать LM317T в случае типовых напряжений, только когда нужно срочно что-то сделать на коленке, а более подходящей микросхемы типа 7805 или 7812 нету под рукой.

А вот расположение выводов LM317T:

  1. Регулировочный
  2. Выходной
  3. Входной

Кстати у отечественного аналога LM317 — КР142ЕН12А схема включения точно такая же.

На этой микросхеме несложно сделать регулируемый блок питания: вместо постоянного R2 поставьте переменный, добавьте сетевой трансформатор и диодный мост.

На LM317 можно сделать и схему плавного пуска: добавляем конденсатор и усилитель тока на биполярном pnp-транзисторе.

Схема включения для цифрового управления выходным напряжением тоже не сложна. Рассчитываем R2 на максимальное требуемое напряжение и параллельно добавляем цепочки из резистора и транзистора. Включение транзистора будет добавлять в параллель к проводимости основного резистора, проводимость дополнительного. И напряжение на выходе будет снижаться.

Схема стабилизатора тока ещё проще, чем напряжения, так как резистор нужен только один. Iвых = Uоп/R1.
Например, таким образом мы получаем из lm317t стабилизатор тока для светодиодов:

  • для одноватных светодиодов I = 350 мА, R1 = 3,6 Ом, мощностью не менее 0,5 Вт.
  • для трехватных светодиодов I = 1 А, R1 = 1,2 Ом, мощностью не менее 1,2 Вт.

На основе стабилизатора легко сделать зарядное устройство для 12 В аккумуляторов, вот что нам предлагает datasheet. С помощью Rs можно настроить ограничение тока, а R1 и R2 определяют ограничение напряжения.

Если в схеме потребуется стабилизировать напряжения при токах более 1,5 А, то все также можно использовать LM317T, но совместно с мощным биполярным транзистором pnp-структуры.
Если нужно построить двуполярный регулируемый стабилизатор напряжения, то нам поможет аналог LM317T, но работающий в отрицательном плече стабилизатора — LM337T.

Но у данной микросхемы есть и ограничения. Она не является стабилизатором с низким падением напряжения, даже наоборот начинает хорошо работать только когда разница между выходным и выходным напряжением превышает 7 В.

Если ток не превышает 100мА, то лучше использовать микросхемы с низким падением LP2950 и LP2951.

Мощные аналоги LM317T — LM350 и LM338

Если выходного тока в 1,5 А недостаточно, то можно использовать:

  • LM350AT, LM350T — 3 А и 25 Вт (корпус TO-220)
  • LM350K — 3 А и 30 Вт (корпус TO-3)
  • LM338T, LM338K — 5 А

Производители этих стабилизаторов кроме увеличения выходного тока, обещают сниженный ток регулировочного входа до 50мкА и улучшенную точность опорного напряжения.
А вот схемы включения подходят от LM317.

Datasheet LM317T

elekt.tech

Использование регулятора напряжения LM317

  
Особенности LM317

– Микросхема может работать в широком диапазоне выходных напряжений от 1.2 до 37 В.
– Микросхема обеспечивает выходной ток до 1.5 А.
– Максимальная рассеиваемая мощность до 20 Вт.
– Микросхема имеет встроенную защиту от перегрузок по току и от короткого замыкания.
– Встроенная защита от перегрева.

Минимальное включение подразумевает использование двух внешних резисторов. Отношение сопротивлений этих резисторов задает выходное напряжение регулятора, и двух конденсаторов на входе и выходе микросхемы.

Наиболее важные электрические параметры микросхемы – это опорное напряжение Vref и тое в цепи управляющего вывода Iadj. опорное напряжение – это напряжение, которое микросхема стремиться поддерживать на резисторе R1, то есть, если замкнуть накоротко резистор R2, то на выходе регулятора мы получит это самое опорное напряжение. Это напряжение может немного меняться от экземпляра к экземпляру и составляет 1.2 … 1.3 В ( в среднем 1.25В.) Чем выше падение напряжение на резисторе R2, тем выше выходное напряжение регулятора. Вычислить выходное напряжение просто, оно равно падению напряжения на R2 + 1.25 (Vref).

  

  
  
Что касается второго параметра Iadj, то это фактически паразитный ток. Чем он меньше, тем лучше. Изготовители микросхемы заявляют этот ток от 50 до 100 микроампер, но в действительности может быть до 500 мкА. Поэтому чтобы обеспечить  хорошую стабильность выходного напряжения, ток через делитель R1-R2 должен быть не менее 5 мА. Можно оттолкнуться от сопротивления резистора R1 и высчитать R2 по формуле:R2=R1*((Uвых/Uоп)-1)

Затем уточнить номиналы в реальных условиях в работающей схеме.

Приведем пример номиналов для пары стандартных напряжений:

Для напряжения 5В R1 = 120 Ом, R2 = 360 Ом
Для напряжения 12В R1 = 240Ом, R2 = 2000 Ом

Однако, для типовых напряжений вроде 5, 12, 15 и т.д. вольт проще и удобнее использовать регуляторы на фиксированные напряжения вроде 7805 или 7812. Использовать 317 для этих целей лучше только в том случае если регулятора на фиксированное напряжение не оказалось под рукой, а сделать источник питания нужно срочно.

Конфигурация выводов микросхемы LM317 в разных корпусах
  
  

Регулируемый источник питания на микросхеме LM317
  
  

Источник питания с плавным запуском. Как видим, к стандартной схеме добавляется биполярный транзистор структуры PNP, резистор на 50 кОм, кремниевый диод и электролитический конденсатор на 25 мкФ. В момент включения такого источника на его выходе минимальное напряжение, которое плавно увеличивается до установленного 15В по мере заряда конденсатора C1.

Также легко сделать на этой микросхеме источник с несколькими фиксированными напряжениями, которые можно переключать программно, с помощью микроконтроллера. Для этого в управляющую цепь включаем цепочки из транзисторов и резисторов, как показано на рисунке ниже. Базы транзисторов соединяем с портами микроконтроллера. При подаче высокого уровня на каждый последующий транзистор он будет подключать параллельно R2 еще один дополнительный резистор и выходное напряжение будет уменьшаться: 
  

   
  
LM317 можно использовать не только для стабилизации напряжения, но и в качестве стабилизатора тока. Схема получается еще проще, так как здесь нужен всего один единственный внешний резистор, задающий выходной ток:
 

   
  
На LM317 можно сделать несложное зарядное устройство для аккумуляторов с номинальным напряжением 12В.  Номиналы резисторов R1 и R2 задают конечное напряжение на заражаемой батарее, а  резистор Rs устанавливает максимальный зарядный ток.  Это схема из даташита на микросхему:
   
 

     
Двуполярный регулируемый источник питания (например как основа для лабораторного блока питания) можно собрать на двух LM317, но тогда придется использовать трансформатор с двумя обмотками и два выпрямителя, то есть каналы источника питания нужно будет делать независимыми друг от друга. Это хорошее, но дорогое решение. Можно упростить себе жизнь, если использовать микросхему LM337 – аналог микросхемы LM317, но на отрицательное напряжение. Тогда схема нашего регулируемого двуполярного источника может выглядеть например так:
   
 

   
Здесь дополнительные мощные транзисторы VT1 и VT2 позволяют увеличить выходной ток стабилизаторов. нужно выбирать транзисторы согласно тому току, на который вы рассчитываете источник питания.

На следующей схеме изображен регулируемый источник питания на ток до 20 ампер и напряжение от 1.3 до 12 вольт. Транзисторы и микросхему LM317 необходимо установить на радиаторы.  Резисторы в эмиттерных цепях транзисторов должны быть рассчитаны на мощность не менее 5 Вт.
     

musbench.com

Схема простого стабилизатора с регулировкой по напряжению

Лабораторный блок питания на LM317

Здравствуйте друзья!

Лабораторный блок питания необходим радиолюбителю, без него как без рук. Для начинающих радиолюбителей я предлагаю собрать схему простого стабилизатора с регулировкой по напряжению на микросхеме LM317, на очень распространенных и не дорогих радиоэлементах. Диапазон выходного напряжения от 1,5 до 37В. Ток может достигать 5А, зависит от используемого силового транзистора и теплоотвода. Входной трансформатор можно использовать любой выдающий нужный вам ток и  напряжение до 37В. Стабилизатор не боится короткого замыкания, однако держать длительное время выводы замкнутыми не рекомендуется, так как КТ818 и LM317 при этом начинают достаточно ощутимо греться и при неэффективном теплоотводе могут выйти из строя.

Принципиальная  схема стабилизатора с регулировкой по напряжению

Печатная плата стабилизатора с регулировкой по напряжению

 

Достоинства данного стабилизатора.

  • простота в изготовлении
  • надежность
  • дешевизна
  • доступность компонентов

Недостатки

  • низкий КПД.
  • необходимость использования массивных радиаторов.
  • не смотря на компактность самой платы. Размеры стабилизатора с радиатором достаточно внушительного размера.

Для изготовления данного устройства Вам понадобится:

  • Стабилизатор LM317 -1шт.
  • Транзистор КТ818 -1шт. в пластиковом корпусе (TO-220)
  • Диод КД522 или аналогичный -1шт.
  • Резистор R1 -47ОМ желательно от 1Вт -1шт.
  • Резистор R3 220Ом от 0.25 Вт -1шт.
  • Переменный резистор линейный — 5кОм -1шт.
  • Конденсатор электролитический 1000мФ от 50В -1шт.
  • Конденсатор электролитический 100мФ от 50В -1шт.
  • Диодный мост током от 5А

Данная схема не критична к точному соблюдению номиналов радио элементов. Например резистор R1 может быть от 30 до 50 Ом, резистор R3 от 200 до 240Ом. Диод можно не ставить, но лучше чтобы он был.

Фильтрующие конденсаторы можно поставить и большей емкостью, однако стоит учитывать, что конденсатор дает небольшой прирост по напряжению.

Транзистор КТ818 можно заменить аналогичными импортного производства 2N5193, 2N6132, 2N6469, 2N5194, 2N6246, 2N6247.

При выборе радиатора стоит учитывать, что мощность рассеивания  КТ818 составляет 60ВТ. Я рекомендую использовать радиаторы от компьютерной техники с кулером.

Простой двух полярный стабилизатор напряжения.

За основу устройства взята схема описанная выше, и добавлено плечо стабилизации отрицательного напряжения. Со схемой устройства можно ознакомится ниже.

Характеристики и достоинства двухполярного стабилизатора

  • напряжение стабилизации от 1,2 до 36 В;
  • максимальный ток до 5 А;
  • используется малое количество элементов;
  • простота в выборе трансформатора, так как можно использовать вторичную обмотку без центрального отвода;

Детали устанавливаются на односторонний стеклотекстолит. Транзистор VT1, VT2 и микросхемы LM317 и LM337 следует устанавливать на радиаторы. При установке на общий радиатор следует использовать изолирующие прокладки и втулки.

На этом все. Если у Вас есть замечания или предложения по данной статье, прошу написать администратору сайта.

Успехов!

Facebook

Twitter

Мой мир

Вконтакте

Одноклассники

Google+

Читайте также:

electrongrad.ru

Электротехника: Стабилизатор напряжения на LM317.

LM317 – это недорогая микросхема стабилизатор напряжения со встроенной защитой от короткого замыкания на выходе и от перегрева, на LM317 может быть изготовлен простой в сборке линейный стабилизатор постоянного напряжения которое м.б. регулируемым. Такие микросхемы бывают в разных корпусах например в ТО-220 или в ТО-92. Если корпус ТО-92 то последние две буквы названия будут LZ т.е. так: LM317LZ, цоколёвки этой микросхемы в разных корпусах различаются поэтому нужно быть внимательнее, также существуют такие микросхемы в smd корпусах. Заказать LM317LZ оптом небольшой партией можно по ссылке: LM317LZ (10шт.), LM317T по ссылке: LM317T (10шт.). Рассмотрим схему стабилизатора:

Рисунок 1 – Стабилизатор постоянного напряжения на микросхеме LM317LZ


Данный стабилизатор помимо микросхемы содержит ещё 4 детали, резистором R2 регулируется напряжение на выходе стабилизатора. Для простоты сборки можно воспользоваться схемой:

Рисунок 2 – Стабилизатор постоянного напряжения на микросхеме LM317LZ


Все стабилизаторы постоянного напряжения делятся на 2 типа это:
1) линейные (как например в нашем случае т.е. на LM317),
2) импульсные (с большими КПД и для более мощных нагрузок).
Принцип работы линейных (не всех) стабилизаторов можно понять из рисунка:

Рисунок 3 – Принцип работы линейного стабилизатора


Из рисунка 3 видно то что такой стабилизатор представляет собой делитель нижним плечом которого является нагрузка а верхним сама микросхема. Напряжение на входе меняется и микросхема изменяет своё сопротивление так чтобы на выходе напряжение было неизменным. Такие стабилизаторы обладают низким КПД т.к. часть энергии теряется на микросхеме. Импульсные стабилизаторы тоже представляют собой делитель только у них верхнее (или нижнее) плечо может либо иметь очень низкое сопротивление (открытый ключ) либо очень высокое (закрытый ключ), чередованием таких состояний создаётся ШИМ с высокой частотой а на нагрузке напряжение сглаживается конденсатором (и/или ток сглаживается дросселем), таким образом создаётся высокое КПД но из за высокой частоты ШИМа импульсные стабилизаторы создают электромагнитные помехи. Существуют также линейные стабилизаторы в которых элемент осуществляющий стабилизацию ставиться параллельно нагрузке – в таких случаях этим элементом обычно является стабилитрон и для того чтобы осуществлялась стабилизация на это параллельное соединение подаётся ток от источника тока, источник тока делается путём установки последовательно с источником напряжения резистора с большим сопротивлением, если напряжение подавать на такой стабилизатор непосредственно то стабилизации не будет а стабилитрон скорее всего перегорит.

Выходное напряжение можно рассчитать по формуле:

Где для LM317 (а также для LM217, LM117):

Также для расчёта можно воспользоваться программой:

КАРТА БЛОГА (содержание)

electe.blogspot.com

alexxlab

leave a Comment