Содержание

виды, классификация и особенности звучания

Конденсаторы (Capacitors, CAP) являются важными компонентами в аудиосистемах. Они имеют различные показатели напряжения, тока и форм-факторов. Для того чтобы выбрать, какие конденсаторы лучше для звука, модераторам нужно разбираться во всех параметрах CAP. Целостность аудиосигнала во многом зависит от выбора конденсаторов. Поэтому при выборе правильного устройства необходимо учитывать все важные факторы.

Параметры CAP аудиосигнала специально оптимизированы для высокопроизводительных приложений и предлагают более эффективные аудиоканалы, чем стандартные компоненты. Типы конденсаторов, которые обычно используются в аудиоканалах, представляют собой алюминиевые электролитические и пленочные CAP, а какие конденсаторы лучше для звука в конкретных условиях, зависит от используемых схем и устройств: громкоговорителей, проигрывателей компакт-дисков и музыкальных инструментов, бас-гитар и других.

История звукового конденсатора

Конденсатор является одним из старейших электронных компонентов. Электрические проводники были обнаружены в 1729 году. В 1745 году немецкий изобретатель Эвальд Георг фон Клейст обнаружил лейденский сосуд, который стал первым CAP. Физик Питер ван Мюссенбрук — физик из Лейденского университета открыл лейденскую банку самостоятельно в 1746 году.

В настоящее время лейденская банка представляет собой стеклянный сосуд, покрытый металлической фольгой внутри и снаружи. CAP служит средством хранения электричества, а какие конденсаторы лучше для звука будет зависеть от емкости, ведь чем больше этот показатель, тем больше электроэнергии он будет хранить. Емкость зависит от размера противоположных пластин, расстояния между пластинами и характера изолятора между ними.

Конденсаторы, используемые в усилителях звука, бывают нескольких типов, например, обычный CAP с металлической фольгой для обеих пластин и пропитанной бумагой между ними. Конденсаторы с металлизированной бумагой (MP), также называемые бумажно-масляными CAP и металлизированные бумажные однослойные конденсаторы (МБГО) для звука, которые используются в цепях переменного, постоянного и импульсного тока.

Позже майлар (полиэстер) и другие синтетические изоляторы стали более распространенными. В шестидесятые годы прошлого века металлический CAP с майларом стал очень популярным. Две сильные стороны этих устройств — меньший размер и тот факт, что они являются самовосстанавливающимися. Сегодня это лучшие конденсаторы для звука, они используются практически в каждом электронном устройстве. Из-за огромных объемов торговли и производства таких типов конденсаторов они довольно дешевы.

Другой тип CAP — электролитический со специальной конструкцией с преимущественно высокими и очень высокими значениями в диапазоне от 1 мкФ до нескольких десятков тысяч мкФ. Они в основном используются для развязки или фильтрации в блоке питания. Наиболее распространенными в конструкции усилителей являются металлизированные майларовые или полиэфирные конденсаторы (МКТ). В усилителях более высокого качества в основном используется металлизированный полипропилен (МКП).

Технология изготовления компонентов

Технология CAP во многом определяет характеристики устройств, а какие конденсаторы лучше для звука зависит от класса оборудования. Высококлассные изделия имеют жесткие допуски и стоят дороже, чем конденсаторы широкого применения. Кроме того, такие высококачественные CAP могут быть многоразовыми. Высококачественные аудиосистемы требуют высококачественных CAP для обеспечения высшего класса качества звука.

Производительность или то, как влияют конденсаторы на звук, во многом зависит от того, как они припаиваются к печатной плате. Пайка вызывает напряжение в пассивных компонентах, что может привести к появлению пьезоэлектрических напряжений и растрескиванию поверхностно установленных CAP. При пайке конденсаторов необходимо использовать правильный порядок пайки и следовать рекомендациям профиля.

Все лавсановые конденсаторы для звука неполяризованные, то есть им не нужно маркировать вывод как положительный, так и отрицательный. Их соединение в цепи не имеет значения. Они предпочтительны в высококачественных звуковых цепях из-за низких потерь и уменьшенных искажений, если при этом позволяет размер изделия.

MKC металлизированный поликарбонатный тип уже практически не используется. Известно, что типы ERO MKC все еще широко применяются, потому что имеют сбалансированный музыкальный звук с очень небольшой окраской. Типы MKP имеют более яркий звук, а также отличаются большим диапазоном звучания.

Малоизвестный тип конденсатора MKV — это металлизированный полипропиленовый CAP в масле. Это лучший конденсатор для звука, поскольку обладает более мощными характеристиками, чем металлизированная бумага в масле.

Качество пассивных элементов

Конденсаторы, особенно когда они находятся на выходной сигнальной линии, сильно влияют на качество звука аудиосистемы.

Есть несколько факторов, которые определяют качество CAP, несомненно, очень важные для аудио:

  1. Толерантность и фактическая емкость, необходимые для использования в фильтрах.
  2. Зависимость емкости от частоты, так 1 микрофарад на 1 000 Гц не означает 1 микрофарад при 20 кГц.
  3. Внутреннее сопротивление (ESR).
  4. Ток утечки.
  5. Старение — фактор, который со временем будет развиваться для любого продукта.

Лучший выбор приложений конденсатора зависит от применения в цепи и необходимой емкости:

  1. Диапазон от 1 пФ до 1 нФ — схемы управления и обратной связи. Этот диапазон в основном используется для устранения высокочастотного шума на аудиоканале или для целей обратной связи, таких как мост усилителя Quad 606. Конденсатор СГМ в звуке является лучшим выбором в этом диапазоне. Он имеет очень хорошую толерантность (до 1 %) и очень низкие искажения и шум, но довольно дорогой. МКС или МКП — это хорошая альтернатива. На сигнальной линии следует избегать керамических CAP, поскольку они могут вызвать дополнительные нелинейные искажения до 1 %.
  2. От 1 нФ до 1 мкФ — сцепление, развязка и подавления колебаний. Они чаще всего используются в аудиосистемах, а также между этапами, когда существует разница в уровне постоянного тока, устранение вибраций и в схемах обратной связи. Как правило, пленочные конденсаторы будут использоваться в этом диапазоне до 4,7 микрофарад. Лучшим выбором конденсатора для звука и аудио является полистирол (МКС), полипропилен (МКП). Полиэтилен (МКТ) является альтернативой с более низкой ценой.
  3. 1 Ф и выше — источники питания, выходные конденсаторы, фильтры, изоляция. Преимущество очень высокая емкость (до 1 Farad). Но есть несколько недостатков. Электролитические CAP подлежат старению и сушке. Через 10 или более лет масло высыхает, а важные факторы, такие как СОЭ, меняются. Они поляризованы и должны быть заменены каждые 10 лет, иначе негативно повлияют на звук. При проектировании соединительного контура электролитов на сигнальной линии часто можно избежать проблем путем пересчета константы времени (RxC) для низкой емкости ниже 1 микрофарада. Это поможет определить, какие электролитические конденсаторы лучше для звука. Если это невозможно, важно, чтобы электролит имел менее 1 В постоянного тока и использовался CAP высокого качества (BHC Aerovox, Nichicon, Epcos, Panasonic).

Выбрав лучшее решение для каждой программы, разработчик может достичь наилучшего качества звука. Инвестирование в высококачественные CAP оказывает положительное влияние на качество звука, больше чем в любой другой компонент.

Тестирование CAP-элементов для приложений

Существует общее понимание о том, что различные CAP могут изменять качество звука в аудиоприкладных программах в различных условиях. Какие конденсаторы установить, в каких схемах и в каких условиях — остаются самыми обсуждаемыми темами у специалистов. Именно поэтому лучше не изобретать велосипед в этой сложной теме, а использовать результаты проверенных испытаний. Некоторые звуковые схемы, как правило, очень большие, а загрязнение в звуковой окружающей среде, например, в таких как заземления и шасси, может быть большой проблемой для качества. Рекомендуется добавлять нелинейность и природные искажения к тесту, проверяя остатки моста с нуля.

Диэлектрический

Полистирол

Полистирол

Полипропилен

Полиэстер

Silver-слюда

Керамический

Polycarb

Температура

72

72

72

72

72

73

72

Уровень напряжения

160

63

50

600

500

50

50

Толерантность %

2.5

1

2

10

1

10

10

Ошибка %

2,18%

0,28%

0,73%

-7,06%

0,01%

-0,09%

-1,72%

Рассеивание

0.000053

0.000028

0.000122

0.004739

0.000168

0.000108

0.000705

Абсорбция

0,02%

0,02%

0,04%

0,23%

0,82%

0,34%

н /

DCR, 100 В

3.00E + 13

2.00E + 15

3.50E + 14

9.50E + 10

2.00E + 12

3.00E + 12

н /

Фаза, 2 МГц

-84

-84

-86

-84

-86

-84

н /

R, 2 МГц

6

7,8

9,2

8,5

7,6

7,6

н /

Собственное разрешение, МГц

7

7,7

9,7

7,5

8,4

9,2

н /

Мост

низкий

низкий

очень низкий

высоко

низкий

низкий

высоко

Характеристики моделей

В идеальном случае разработчик ожидает, что конденсатор будет точно соответствовать его проектному значению, в то время как большинство других параметров будут нулевыми или бесконечными. Основные измерения емкости здесь не так заметны, поскольку детали обычно соответствуют допускам. Все пленочные CAP имеют значительный температурный коэффициент. Поэтому, чтобы определить, какие пленочные конденсаторы лучше для звука, проводят тестирование лабораторными приборами.

Коэффициент диффузии полезен при оценке эффективности электролитического источника питания. Это влияние на звуковые характеристики сигнальных CAP не согласовано и может быть весьма незначительным. Число представляет внутренние потери и при желании может быть преобразовано в эффективное последовательное сопротивление (ESR).

ESR не является постоянной величиной, но имеет тенденцию быть настолько низким в высококачественных конденсаторах, что не оказывает большого влияния на производительность схемы. Если бы были построены резонансные схемы с высоким Q, то это была бы совершенно другая история. Однако низкий коэффициент рассеяния является отличительной чертой хороших диэлектриков, что может служить хорошей подсказкой в дальнейших исследованиях.

Диэлектрическое поглощение может быть более тревожным. Это было серьезной проблемой с ранними аналоговыми компьютерами. Высокого диэлектрическое поглощения можно избежать, так слюдяные конденсаторы для звука могут обеспечить сети RIAA очень хорошим звуком.

Измерения утечки постоянного тока не должны влиять на что-либо, так как сопротивление любого сигнального конденсатора должно быть очень высоким. При использовании материалов с более высокой диэлектрической проницаемостью требуется меньшая площадь поверхности, тогда утечка будет практически несущественной.

Для материалов с более низкой диэлектрической проницаемостью, таких как тефлон, несмотря на его основное высокое удельное сопротивление, может потребоваться большая площадь поверхности. Тогда утечка может быть вызвана малейшим загрязнением или примесями. Утечка постоянного тока, вероятно, является хорошим средством контроля качества, но она не связана с качеством звука.

Нежелательные паразитарные компоненты

Транзисторы, интегральные схемы и другие активные компоненты оказывают существенное влияние на качество аудиосигналов. Они используют питание от источников тока для изменения характеристик сигнала. В отличие от активных компонентов, идеальные пассивные не потребляют энергию и не должны изменять сигналы.

В электронных схемах резисторы, конденсаторы и индукторы фактически ведут себя, как активные компоненты и потребляют энергию. Из-за этих паразитных эффектов они могут значительно изменить звуковые сигналы, и для повышения качества требуется тщательный выбор компонентов. Постоянно растущий спрос на аудиооборудование с лучшим качеством звука заставляет производителей CAP выпускать устройства с лучшими характеристиками. В результате чего современные конденсаторы для использования в аудиоприложениях имеют лучшую производительность и более высокое качество звука.

Паразитные эффекты CAP в акустической цепи состоят из эквивалентного последовательного сопротивления (ESR), эквивалентной последовательной индуктивности (ESL), последовательных источников напряжения из-за эффекта Зеебека и диэлектрического поглощения (DA).

Типичное старение, изменения в рабочих условиях и специфические характеристики делают эти нежелательные паразитные компоненты более сложными. Каждый паразитарный компонент по-разному влияет на производительность электронной схемы. Начнем с того, что эффект сопротивления вызывает утечку постоянного тока. В усилителях и других схемах, содержащих активные компоненты, эта утечка может привести к значительному изменению напряжения смещения, которые могут влиять на различные параметры, включая коэффициент качества (Q).

Способность конденсатора обрабатывать пульсации и пропускать высокочастотные сигналы зависит от компонента ESR. Небольшое напряжение создается в точке, где два неоднородных металла связаны из-за явления, известного как эффект Зеебека. Небольшие батареи из-за этих паразитных термопар могут существенно повлиять на производительность схемы. Некоторые диэлектрические материалы являются пьезоэлектрическими, а шум, который они добавляют к конденсатору, проявляется из-за маленькой батареи внутри компонента. Кроме того, электролитические CAP имеют паразитные диоды, которые могут вызывать изменения в смещении или характеристиках сигнала.

Параметры, влияющие на путь прохождения сигнала

В электронных схемах пассивные компоненты используются для определения усиления, установления блокировки постоянного тока, подавления шума источника питания и обеспечения смещения. Недорогие компоненты с небольшими размерами обычно используются в портативных аудиосистемах.

Характеристики реальных полипропиленовых конденсаторов для звука отличаются от характеристик идеальных компонентов с точки зрения ESR, ESL, диэлектрического поглощения, тока утечки, пьезоэлектрических свойств, температурного коэффициента, допуска и коэффициента напряжения. Хотя важно учитывать эти параметры при разработке CAP для использования в тракте аудиосигнала, два из них, оказывающие наибольшее влияние на путь прохождения сигнала, называют коэффициентом напряжения и обратным пьезоэлектрическим эффектом.

Как конденсаторы, так и резисторы демонстрируют изменение физических характеристик при изменении приложенного напряжения. Это явление обычно называют коэффициентом напряжения, и оно варьируется в зависимости от химического состава, конструкции и типа CAP.

Обратный пьезоэффект влияет на номинальное электрическое значение конденсаторов для усилителя звука. В аудиоусилителях это изменение электрического значения компонента приводит к изменению усиления в зависимости от сигнала. Этот нелинейный эффект приводит к искажению звука. Обратный пьезоэлектрический эффект вызывает значительные искажения аудиосигнала на более низких частотах и является основным источником коэффициента напряжения в керамических CAP класса II.

Напряжение, приложенное к CAP, влияет на его производительность. В случае керамических CAP класса II, емкость компонента уменьшается, когда прикладывается возрастающее положительное постоянное напряжение. Если к нему подается высокое напряжение переменного тока, емкость компонента уменьшается аналогичным образом. Однако, когда прикладывается низкое переменное напряжение, емкость компонента имеет тенденцию к увеличению. Эти изменения в емкости могут значительно повлиять на качество аудиосигналов.

Общая характеристика гармонических искажений THD

THD конденсаторов для звука зависит от диэлектрического материала компонента. Некоторые из них могут давать впечатляющие характеристики THD, в то время как другие могут серьезно ухудшить его. Полиэфирные конденсаторы и алюминиевые электролитические конденсаторы относятся к числу CAP, которые дают самое низкое значение THD. В случае диэлектрических материалов класса II, X7R предлагает лучшие характеристики именно THD.

CAP для использования в аудиооборудовании обычно классифицируются в соответствии с применением, для которого они используются. Три приложения: путь прохождения сигнала, функциональные задачи и приложения поддержки напряжения. Обеспечение использования оптимальных конденсатор MKT для звука в этих трех областях помогает улучшить выходной тон и уменьшить искажения звука. Полипропиленовые имеют низкий коэффициент рассеяния и подходят для всех трех областей. Хотя все CAP, используемые в аудиосистеме, влияют на качество звука, компоненты, находящиеся на пути прохождения сигнала, оказывают наибольшее влияние.

Использование высококачественных конденсаторов класса аудио помогает значительно снизить ухудшение качества звука. Из-за их превосходной линейности пленочные конденсаторы обычно используются в аудиотракте. Эти неполярные конденсаторы для звука идеально подходят для аудиотехники премиум-класса. Диэлектрики, обычно применяемые в конструкциях пленочных конденсаторов с качеством звука для использования на пути прохождения сигнала, включают полиэфир, полипропилен, полистирол и полифениленсульфид.

CAP для использования в предварительных усилителях, цифро-аналоговых преобразователях, аналого-цифровых преобразователях и аналогичных приложениях совместно классифицируются как функциональные конденсаторы задания. Хотя эти неполярные конденсаторы для звука не находятся на пути прохождения сигнала, они тоже могут значительно ухудшить качество аудиосигнала.

Конденсаторы, которые используются для поддержания напряжения в аудиооборудовании, оказывают минимальное влияние на звуковой сигнал. Несмотря на это, требуется внимание при выборе CAP, которые поддерживают напряжение для оборудования высокого класса. Использование компонентов, оптимизированных для аудио приложений, помогает улучшить производительность звуковой схемы.

Полистирольный пластинчато-диэлектрический блок

Полистирольные конденсаторы изготавливаются путем намотки пластинчато-диэлектрического блока, подобного электролитическому, или путем укладки в последовательные слои, например, книгу (сложенная пленка-фольга). В основном они используются в качестве диэлектриков из различных пластиков, таких как полипропилен (MKP), полиэфир / майлар (MKT), полистирол, поликарбонат (MKC) или тефлон. Для пластин используют алюминий с высокой степенью чистоты.

В зависимости от типа используемого диэлектрика производятся конденсаторы разных размеров и емкости с рабочим напряжением. Высокая диэлектрическая прочность полиэфира позволяет изготавливать лучшие электролитические конденсаторы для звука небольшого размера и при относительно низких затратах для повседневного использования, когда особые качества не требуются. Возможны емкости от 1 000 пФ до 4,7 микрофарад при рабочих напряжениях до 1 000 В.

Коэффициент диэлектрических потерь в полиэфире относительно высок. Для аудио полипропилен или полистирол могут значительно снизить диэлектрические потери, но здесь следует отметить, что они намного дороже. Полистирольные используются в фильтрах / кроссоверах. Одним недостатком полистирольных конденсаторов является низкая температура плавления диэлектрика. Вот почему полипропиленовые конденсаторы для звука обычно отличаются друг от друга, так как диэлектрик защищен путем отделения паяных выводов от корпуса конденсатора.

Технология FIM с высокой плотностью энергии

Пленочные CAP большой мощности предлагают три категории этого типа: TRAFIM (стандартная и специальная), FILFIM и PPX. Технология FIM основана на концепции контролируемых самовосстанавливающихся свойств сегментированных пленок металлизации алюминия.

Емкость разделена на несколько миллионов элементарных элементов, объединенных и защищенных плавкими предохранителями. Слабые диэлектрические элементы изолированы, а перед перфорацией предохранителей изолируют поврежденные элементы, с которыми конденсатор продолжает работать в обычном режиме без короткого замыкания или взрыва, как это может быть в случае электролитических конденсаторов для звука.

При благоприятных условиях не следует ожидать, что ожидаемый срок службы CAP этого типа превысит 200 000 часов, а MTBF — 10 000 000 часов. Работая как батарея, эти конденсаторы потребляют небольшую часть емкости из-за постепенного разрушения отдельных элементов в течение срока службы компонента.

Серии TRAFIM и FILFIM предлагают непрерывную фильтрацию для высоких напряжений / мощностей (до 1 кВ). Емкость варьируется:

  • от 610 мкФ до 15 625 мкФ для стандартного TRAFIM;
  • от 145 мкФ до 15 460 мкФ для специального TRAFIM;
  • от 8,2 мкФ до 475 мкФ для FILFIM.

Диапазон постоянного напряжения составляет:

  • от 1,4 кВ до 4,2 кВ для стандартного TRAFIM;
  • от 1,3 кВ до 5,3 кВ для персонализированного TRAFIM;
  • и от 5,9 кВ до 31,7 кВ для FILFIM.

Конденсаторы серии PPX предлагают полный спектр сетевых решений для защиты от помех в тиристорах GTO, а также для блокирующих CAP, предлагая емкость от 0,19 мкФ до 6,4 мкФ. Диапазон напряжения для PPX колеблется от 1 600 В до 7 500 В с очень низкой собственной индуктивностью.

Пленочные конденсаторы для звука, как правило, имеют отличные высокочастотные характеристики, но это часто компрометируется большими размерами и компенсируется большой длиной провода. Можно заметить, что у маленького радиального конденсатора Panasonic собственный резонанс намного выше (9,7 МГц), чем у Audience (4,5 МГц). Это не из-за установленной тефлоновой крышки, а из-за того, что она имеет длину в несколько дюймов и не может быть присоединена к корпусу. Если разработчику нужны высокочастотные характеристики для поддержания стабильности в широкополосных полупроводниках, уменьшают размер и длину провода до абсолютного минимума.

Производительность звуковых цепей сильно зависит от пассивных компонентов, таких как конденсаторы и резисторы. Фактические CAP содержат нежелательные паразитные компоненты, которые могут значительно искажать характеристики аудиосигналов. Конденсаторы, используемые в тракте сигнала, в значительной степени определяют качество аудиосигнала. В результате требуется тщательный выбор CAP, чтобы минимизировать ухудшение сигнала.

Конденсаторы класса аудио оптимизированы для удовлетворения потребностей современных высококачественных аудиосистем. Пластиковые пленочные конденсаторы для звука используются в высококачественных аудиосистемах и имеют широкий спектр применения.

fb.ru

Аудиофильские конденсаторы Nichicon KZ (MUSE) 47 мкф 50 вольт, собираем Hi-End усилитель для наушников.

Привет!

Тема усилителей для наушников для меня новая, я считала что зачем такой усилитель вообще, но когда мне на обзор прислали наушники БлитцВульф, и встроенная звуковая карта не смогла раскачать их, я призадумалась, а не собрать ли мне хороший усилитель для наушников, чтоб и выглядел хорошо, и «раскачать» мог всё. К процессу «разработки» подключилась Нино, и мы вместе сделали что-то красивое и хорошо звучащее)))))))

Обозреваемые конденсаторы — это специальные «Аудиофильские» конденсаторы, где конструкция и состав электролита оптимизированы для качественной передачи звука. Во всяком случае, так утверждает производитель. Со своей стороны, хочу сказать что качество звука хорошее, и визуально конденсаторы очень красивые, заняли почётное место в моих аудиофильских конденсаторах.

Измерила емкость и ESR всех 10 штук.

Минимальная емкость была 45.6мкф, максимальная — 51. ESR — 0-0.02 ohm.

Пересмотрев в интернете множество схем, выбрала сравнительно простую, но надёжную и эффективную схему, которую взяла тут:

sound.whsites.net/project113.htm

Я внесла в схему небольшие изменения; Поменяла входной конденсатор на конденсатор в 47мкф (обозреваемый), резистор в обратной связи усиления поставила 5.1к, так как с 3.3к было очень тихо, а с 20к было очень громко и шумно, и выходные транзисторы поставила KSD1691, KSB1151 (других попросту не было).

Все остальные изменения косметические, но греют душу)))) поставила красивые, красные диоды ITT, красную кроватку DIP-8 для операционного усилителя NE5532 и все конденсаторы применила высококачественные, LowESR Matsushita и Nichicon в цепях питания, Wima MKP в фильтрах, и Philips PC в качестве входных. Разумеется, переменный резистор тоже оригинальный японский ALPS.

С чёрным текстолитом я работаю давно, но как красиво платы не собирай, всё равно чего-то не хватает, нет законченности и «профессиональности». Сравнивая с заводскими, не сразу и догадалась в чём разница, но потом заметила, у меня нет шелкографии и надписей на платах, а у заводских есть, вот и вся разница. Сидим с Нино вместе в кафешке, поделилась своей проблемой, и у Нино возникла «отличная» идея, давай мол сделаем как переводную татуировку? напечатаем и приклеим? я ей и говорю, молодец, ты «изобрела» метод ЛУТ, которым платы делаются, но у которого есть один минус для нашего применения — тонер то в принтере чёрный, а у нас текстолит тоже чёрный, ничего не будет видно, так что совет хороший, но не поможет он мне никак. Но что-то мучало меня, и я стала развивать мысль, а что если напечатать трафарет, и через него наносить краску кисточкой? но должны же быть замкнутые области, как же трафарет в них удержать? и тут я вспомнила, как клеили буквы на стекло рекламщики. У них на листе уже было собрано слово из букв, они на эти буквы наклеили сверху прозрачный скотчеподобный материал, с помощью которого и перенесли буквы на стекло! Это мне показалось вполне реализуемым, пошла в рекламную компанию, где на плоттере мне вырезали нужный трафарет, который перенесла на плату, а потом мы с Нино, используя акриловую краску и кисточки, заполнили прорези в трафарете, подсушили плату в термостате, чтоб краска закрепилась, потом отодрали трафарет, и запекли плату на 250С на один час. В результате чего, акрил окаменел и он визуально стал похожим на обычную шелкографию. А впрочем, чего я всё пишу, посмотрите сами!

Красота, от заводской и не отличишь! (но это экземпляр №5, до этого 4 штуки испортили, то перегрели, то недогрели, то пальцем мазанули) И заодно свой «бренд» «изобрели». Рисую плату в очередной раз, и тут Нино говорит, а что у тебя всё красиво, но несимметрично? сделай такие же три точки слева, как у тебя справа есть, получится бабочка. Я ей и говорю, это вход усилителя, зачем их делать два? ну тогда что-то нарисуй, чтоб пусто не было. Я подумала нарисовать Мисс Пакман, с бантиком, и как будто она пиксели есть, но потом решила, а пусть будет у нас свое лого, и «Придумала» — «ACE SOUND», если по короткому то «ACE SND» Пришлось его делать «Векторным», тонкостенным, так как акрилом покрыть большие плоскости красиво не получается, он начинает ужиматься при высыхании. Раз «технологию» освоили, то сделали и плату блока питания, сразу с прорезями, как у «взрослых»

Схема обычная, два трансформатора, два моста, два стабилизатора на 12 вольт, и получаем двух полярный источник питания. У меня были стабилизаторы на 12 вольт в корпусе ТО-3, решила использовать их, но не ставить на радиаторы, а сделать подложку из молочно-белого оргстекла, и подсветить его снизу оранжевым светодиодом.

Получилось классно! и глаза не режет, но всё равно подсветка заметна!

Сделала и входной фильтр, и включатель и предохранитель, а для подключения к корпусу стабилизатора использовала позолоченные винты и гайки, всё как у настоящих аудиофилов)))))))

Всё наконец то собрано, подключила и работает! всё работает, ничего не горит, дыма нет, ничего не взорвалось, ура! Да вот на радостях встал вопрос, а как всё это с друг-другом соединить, чтоб было красиво? и где входные и выходные разъёмы, куда спрашивается глаза смотрели, когда плату рисовала? и много других горестных слов в свой адрес(((((( Но выход был найден! решила делать дополнительную, коммутационную плату, на которой и разместила и входные и выходные разъёмы, и индикатор наличия питания, и заодно сделала регулятор выходного импеданса, поставила переключатель, который последовательно с выходом включает резисторы на 16 ом, это если наушники будут очень низкоомные.

Теперь дело осталось за малым, сделать корпус. Я думаю сделать передную и задную панель из дерева, низ и бока из чёрного оргстекла с перфорацией, а верх — из дымчатого оргстекла, чтоб вся красота внутри была видна))))) Вот только книжку дочитаю, и сразу примусь за дело))))))

[Архивное фото — «Лаборант А, Саркисян знакомится с описанием современного вычислительного устройства Videoton»]

Некоторые просили в конце обзора поставить фото зверюшек. У меня дома зверюшек нет, был хомяк, но умер от старости.

Надеюсь, вам было интересно!

С Уважением,

Анна.

mysku.ru

Какие конденсаторы лучше для звука: виды, классификация и особенности звучания

Конденсаторы (Capacitors, CAP) являются важными компонентами в аудиосистемах. Они имеют различные показатели напряжения, тока и форм-факторов. Для того чтобы выбрать, какие конденсаторы лучше для звука, модераторам нужно разбираться во всех параметрах CAP. Целостность аудиосигнала во многом зависит от выбора конденсаторов. Поэтому при выборе правильного устройства необходимо учитывать все важные факторы.

Параметры CAP аудиосигнала специально оптимизированы для высокопроизводительных приложений и предлагают более эффективные аудиоканалы, чем стандартные компоненты. Типы конденсаторов, которые обычно используются в аудиоканалах, представляют собой алюминиевые электролитические и пленочные CAP, а какие конденсаторы лучше для звука в конкретных условиях, зависит от используемых схем и устройств: громкоговорителей, проигрывателей компакт-дисков и музыкальных инструментов, бас-гитар и других.

История звукового конденсатора

Конденсатор является одним из старейших электронных компонентов. Электрические проводники были обнаружены в 1729 году. В 1745 году немецкий изобретатель Эвальд Георг фон Клейст обнаружил лейденский сосуд, который стал первым CAP. Физик Питер ван Мюссенбрук — физик из Лейденского университета открыл лейденскую банку самостоятельно в 1746 году.

В настоящее время лейденская банка представляет собой стеклянный сосуд, покрытый металлической фольгой внутри и снаружи. CAP служит средством хранения электричества, а какие конденсаторы лучше для звука будет зависеть от емкости, ведь чем больше этот показатель, тем больше электроэнергии он будет хранить. Емкость зависит от размера противоположных пластин, расстояния между пластинами и характера изолятора между ними.

Конденсаторы, используемые в усилителях звука, бывают нескольких типов, например, обычный CAP с металлической фольгой для обеих пластин и пропитанной бумагой между ними. Конденсаторы с металлизированной бумагой (MP), также называемые бумажно-масляными CAP и металлизированные бумажные однослойные конденсаторы (МБГО) для звука, которые используются в цепях переменного, постоянного и импульсного тока.

Позже майлар (полиэстер) и другие синтетические изоляторы стали более распространенными. В шестидесятые годы прошлого века металлический CAP с майларом стал очень популярным. Две сильные стороны этих устройств — меньший размер и тот факт, что они являются самовосстанавливающимися. Сегодня это лучшие конденсаторы для звука, они используются практически в каждом электронном устройстве. Из-за огромных объемов торговли и производства таких типов конденсаторов они довольно дешевы.

Другой тип CAP — электролитический со специальной конструкцией с преимущественно высокими и очень высокими значениями в диапазоне от 1 мкФ до нескольких десятков тысяч мкФ. Они в основном используются для развязки или фильтрации в блоке питания. Наиболее распространенными в конструкции усилителей являются металлизированные майларовые или полиэфирные конденсаторы (МКТ). В усилителях более высокого качества в основном используется металлизированный полипропилен (МКП).

Технология изготовления компонентов

Технология CAP во многом определяет характеристики устройств, а какие конденсаторы лучше для звука зависит от класса оборудования. Высококлассные изделия имеют жесткие допуски и стоят дороже, чем конденсаторы широкого применения. Кроме того, такие высококачественные CAP могут быть многоразовыми. Высококачественные аудиосистемы требуют высококачественных CAP для обеспечения высшего класса качества звука.

Производительность или то, как влияют конденсаторы на звук, во многом зависит от того, как они припаиваются к печатной плате. Пайка вызывает напряжение в пассивных компонентах, что может привести к появлению пьезоэлектрических напряжений и растрескиванию поверхностно установленных CAP. При пайке конденсаторов необходимо использовать правильный порядок пайки и следовать рекомендациям профиля.

Все лавсановые конденсаторы для звука неполяризованные, то есть им не нужно маркировать вывод как положительный, так и отрицательный. Их соединение в цепи не имеет значения. Они предпочтительны в высококачественных звуковых цепях из-за низких потерь и уменьшенных искажений, если при этом позволяет размер изделия.

MKC металлизированный поликарбонатный тип уже практически не используется. Известно, что типы ERO MKC все еще широко применяются, потому что имеют сбалансированный музыкальный звук с очень небольшой окраской. Типы MKP имеют более яркий звук, а также отличаются большим диапазоном звучания.

Малоизвестный тип конденсатора MKV — это металлизированный полипропиленовый CAP в масле. Это лучший конденсатор для звука, поскольку обладает более мощными характеристиками, чем металлизированная бумага в масле.

Качество пассивных элементов

Конденсаторы, особенно когда они находятся на выходной сигнальной линии, сильно влияют на качество звука аудиосистемы.

Есть несколько факторов, которые определяют качество CAP, несомненно, очень важные для аудио:

  • Толерантность и фактическая емкость, необходимые для использования в фильтрах.
  • Зависимость емкости от частоты, так 1 микрофарад на 1 000 Гц не означает 1 микрофарад при 20 кГц.
  • Внутреннее сопротивление (ESR).
  • Ток утечки.
  • Старение — фактор, который со временем будет развиваться для любого продукта.
  • Лучший выбор приложений конденсатора зависит от применения в цепи и необходимой емкости:

  • Диапазон от 1 пФ до 1 нФ — схемы управления и обратной связи. Этот диапазон в основном используется для устранения высокочастотного шума на аудиоканале или для целей обратной связи, таких как мост усилителя Quad 606. Конденсатор СГМ в звуке является лучшим выбором в этом диапазоне. Он имеет очень хорошую толерантность (до 1 %) и очень низкие искажения и шум, но довольно дорогой. МКС или МКП — это хорошая альтернатива. На сигнальной линии следует избегать керамических CAP, поскольку они могут вызвать дополнительные нелинейные искажения до 1 %.
  • От 1 нФ до 1 мкФ — сцепление, развязка и подавления колебаний. Они чаще всего используются в аудиосистемах, а также между этапами, когда существует разница в уровне постоянного тока, устранение вибраций и в схемах обратной связи. Как правило, пленочные конденсаторы будут использоваться в этом диапазоне до 4,7 микрофарад. Лучшим выбором конденсатора для звука и аудио является полистирол (МКС), полипропилен (МКП). Полиэтилен (МКТ) является альтернативой с более низкой ценой.
  • 1 Ф и выше — источники питания, выходные конденсаторы, фильтры, изоляция. Преимущество очень высокая емкость (до 1 Farad). Но есть несколько недостатков. Электролитические CAP подлежат старению и сушке. Через 10 или более лет масло высыхает, а важные факторы, такие как СОЭ, меняются. Они поляризованы и должны быть заменены каждые 10 лет, иначе негативно повлияют на звук. При проектировании соединительного контура электролитов на сигнальной линии часто можно избежать проблем путем пересчета константы времени (RxC) для низкой емкости ниже 1 микрофарада. Это поможет определить, какие электролитические конденсаторы лучше для звука. Если это невозможно, важно, чтобы электролит имел менее 1 В постоянного тока и использовался CAP высокого качества (BHC Aerovox, Nichicon, Epcos, Panasonic).
  • Выбрав лучшее решение для каждой программы, разработчик может достичь наилучшего качества звука. Инвестирование в высококачественные CAP оказывает положительное влияние на качество звука, больше чем в любой другой компонент.

    Тестирование CAP-элементов для приложений

    Существует общее понимание о том, что различные CAP могут изменять качество звука в аудиоприкладных программах в различных условиях. Какие конденсаторы установить, в каких схемах и в каких условиях — остаются самыми обсуждаемыми темами у специалистов. Именно поэтому лучше не изобретать велосипед в этой сложной теме, а использовать результаты проверенных испытаний. Некоторые звуковые схемы, как правило, очень большие, а загрязнение в звуковой окружающей среде, например, в таких как заземления и шасси, может быть большой проблемой для качества. Рекомендуется добавлять нелинейность и природные искажения к тесту, проверяя остатки моста с нуля.

    Диэлектрический

    Полистирол

    Полистирол

    Полипропилен

    Полиэстер

    Silver-слюда

    Керамический

    Polycarb

    Температура

    72

    72

    72

    72

    72

    73

    72

    Уровень напряжения

    160

    63

    50

    600

    500

    50

    50

    Толерантность %

    2.5

    1

    2

    10

    1

    10

    10

    Ошибка %

    2,18%

    0,28%

    0,73%

    -7,06%

    0,01%

    -0,09%

    -1,72%

    Рассеивание

    0.000053

    0.000028

    0.000122

    0.004739

    0.000168

    0.000108

    0.000705

    Абсорбция

    0,02%

    0,02%

    0,04%

    0,23%

    0,82%

    0,34%

    н /

    DCR, 100 В

    3.00E + 13

    2.00E + 15

    3.50E + 14

    9.50E + 10

    2.00E + 12

    3.00E + 12

    н /

    Фаза, 2 МГц

    -84

    -84

    -86

    -84

    -86

    -84

    н /

    R, 2 МГц

    6

    7,8

    9,2

    8,5

    7,6

    7,6

    н /

    Собственное разрешение, МГц

    7

    7,7

    9,7

    7,5

    8,4

    9,2

    н /

    Мост

    низкий

    низкий

    очень низкий

    высоко

    низкий

    низкий

    высоко

    Характеристики моделей

    В идеальном случае разработчик ожидает, что конденсатор будет точно соответствовать его проектному значению, в то время как большинство других параметров будут нулевыми или бесконечными. Основные измерения емкости здесь не так заметны, поскольку детали обычно соответствуют допускам. Все пленочные CAP имеют значительный температурный коэффициент. Поэтому, чтобы определить, какие пленочные конденсаторы лучше для звука, проводят тестирование лабораторными приборами.

    Коэффициент диффузии полезен при оценке эффективности электролитического источника питания. Это влияние на звуковые характеристики сигнальных CAP не согласовано и может быть весьма незначительным. Число представляет внутренние потери и при желании может быть преобразовано в эффективное последовательное сопротивление (ESR).

    ESR не является постоянной величиной, но имеет тенденцию быть настолько низким в высококачественных конденсаторах, что не оказывает большого влияния на производительность схемы. Если бы были построены резонансные схемы с высоким Q, то это была бы совершенно другая история. Однако низкий коэффициент рассеяния является отличительной чертой хороших диэлектриков, что может служить хорошей подсказкой в дальнейших исследованиях.

    Диэлектрическое поглощение может быть более тревожным. Это было серьезной проблемой с ранними аналоговыми компьютерами. Высокого диэлектрическое поглощения можно избежать, так слюдяные конденсаторы для звука могут обеспечить сети RIAA очень хорошим звуком.

    Измерения утечки постоянного тока не должны влиять на что-либо, так как сопротивление любого сигнального конденсатора должно быть очень высоким. При использовании материалов с более высокой диэлектрической проницаемостью требуется меньшая площадь поверхности, тогда утечка будет практически несущественной.

    Для материалов с более низкой диэлектрической проницаемостью, таких как тефлон, несмотря на его основное высокое удельное сопротивление, может потребоваться большая площадь поверхности. Тогда утечка может быть вызвана малейшим загрязнением или примесями. Утечка постоянного тока, вероятно, является хорошим средством контроля качества, но она не связана с качеством звука.

    Нежелательные паразитарные компоненты

    Транзисторы, интегральные схемы и другие активные компоненты оказывают существенное влияние на качество аудиосигналов. Они используют питание от источников тока для изменения характеристик сигнала. В отличие от активных компонентов, идеальные пассивные не потребляют энергию и не должны изменять сигналы.

    В электронных схемах резисторы, конденсаторы и индукторы фактически ведут себя, как активные компоненты и потребляют энергию. Из-за этих паразитных эффектов они могут значительно изменить звуковые сигналы, и для повышения качества требуется тщательный выбор компонентов. Постоянно растущий спрос на аудиооборудование с лучшим качеством звука заставляет производителей CAP выпускать устройства с лучшими характеристиками. В результате чего современные конденсаторы для использования в аудиоприложениях имеют лучшую производительность и более высокое качество звука.

    Паразитные эффекты CAP в акустической цепи состоят из эквивалентного последовательного сопротивления (ESR), эквивалентной последовательной индуктивности (ESL), последовательных источников напряжения из-за эффекта Зеебека и диэлектрического поглощения (DA).

    Типичное старение, изменения в рабочих условиях и специфические характеристики делают эти нежелательные паразитные компоненты более сложными. Каждый паразитарный компонент по-разному влияет на производительность электронной схемы. Начнем с того, что эффект сопротивления вызывает утечку постоянного тока. В усилителях и других схемах, содержащих активные компоненты, эта утечка может привести к значительному изменению напряжения смещения, которые могут влиять на различные параметры, включая коэффициент качества (Q).

    Способность конденсатора обрабатывать пульсации и пропускать высокочастотные сигналы зависит от компонента ESR. Небольшое напряжение создается в точке, где два неоднородных металла связаны из-за явления, известного как эффект Зеебека. Небольшие батареи из-за этих паразитных термопар могут существенно повлиять на производительность схемы. Некоторые диэлектрические материалы являются пьезоэлектрическими, а шум, который они добавляют к конденсатору, проявляется из-за маленькой батареи внутри компонента. Кроме того, электролитические CAP имеют паразитные диоды, которые могут вызывать изменения в смещении или характеристиках сигнала.

    Параметры, влияющие на путь прохождения сигнала

    В электронных схемах пассивные компоненты используются для определения усиления, установления блокировки постоянного тока, подавления шума источника питания и обеспечения смещения. Недорогие компоненты с небольшими размерами обычно используются в портативных аудиосистемах.

    Характеристики реальных полипропиленовых конденсаторов для звука отличаются от характеристик идеальных компонентов с точки зрения ESR, ESL, диэлектрического поглощения, тока утечки, пьезоэлектрических свойств, температурного коэффициента, допуска и коэффициента напряжения. Хотя важно учитывать эти параметры при разработке CAP для использования в тракте аудиосигнала, два из них, оказывающие наибольшее влияние на путь прохождения сигнала, называют коэффициентом напряжения и обратным пьезоэлектрическим эффектом.

    Как конденсаторы, так и резисторы демонстрируют изменение физических характеристик при изменении приложенного напряжения. Это явление обычно называют коэффициентом напряжения, и оно варьируется в зависимости от химического состава, конструкции и типа CAP.

    Обратный пьезоэффект влияет на номинальное электрическое значение конденсаторов для усилителя звука. В аудиоусилителях это изменение электрического значения компонента приводит к изменению усиления в зависимости от сигнала. Этот нелинейный эффект приводит к искажению звука. Обратный пьезоэлектрический эффект вызывает значительные искажения аудиосигнала на более низких частотах и является основным источником коэффициента напряжения в керамических CAP класса II.

    Напряжение, приложенное к CAP, влияет на его производительность. В случае керамических CAP класса II, емкость компонента уменьшается, когда прикладывается возрастающее положительное постоянное напряжение. Если к нему подается высокое напряжение переменного тока, емкость компонента уменьшается аналогичным образом. Однако, когда прикладывается низкое переменное напряжение, емкость компонента имеет тенденцию к увеличению. Эти изменения в емкости могут значительно повлиять на качество аудиосигналов.

    Общая характеристика гармонических искажений THD

    THD конденсаторов для звука зависит от диэлектрического материала компонента. Некоторые из них могут давать впечатляющие характеристики THD, в то время как другие могут серьезно ухудшить его. Полиэфирные конденсаторы и алюминиевые электролитические конденсаторы относятся к числу CAP, которые дают самое низкое значение THD. В случае диэлектрических материалов класса II, X7R предлагает лучшие характеристики именно THD.

    CAP для использования в аудиооборудовании обычно классифицируются в соответствии с применением, для которого они используются. Три приложения: путь прохождения сигнала, функциональные задачи и приложения поддержки напряжения. Обеспечение использования оптимальных конденсатор MKT для звука в этих трех областях помогает улучшить выходной тон и уменьшить искажения звука. Полипропиленовые имеют низкий коэффициент рассеяния и подходят для всех трех областей. Хотя все CAP, используемые в аудиосистеме, влияют на качество звука, компоненты, находящиеся на пути прохождения сигнала, оказывают наибольшее влияние.

    Использование высококачественных конденсаторов класса аудио помогает значительно снизить ухудшение качества звука. Из-за их превосходной линейности пленочные конденсаторы обычно используются в аудиотракте. Эти неполярные конденсаторы для звука идеально подходят для аудиотехники премиум-класса. Диэлектрики, обычно применяемые в конструкциях пленочных конденсаторов с качеством звука для использования на пути прохождения сигнала, включают полиэфир, полипропилен, полистирол и полифениленсульфид.

    CAP для использования в предварительных усилителях, цифро-аналоговых преобразователях, аналого-цифровых преобразователях и аналогичных приложениях совместно классифицируются как функциональные конденсаторы задания. Хотя эти неполярные конденсаторы для звука не находятся на пути прохождения сигнала, они тоже могут значительно ухудшить качество аудиосигнала.

    Конденсаторы, которые используются для поддержания напряжения в аудиооборудовании, оказывают минимальное влияние на звуковой сигнал. Несмотря на это, требуется внимание при выборе CAP, которые поддерживают напряжение для оборудования высокого класса. Использование компонентов, оптимизированных для аудио приложений, помогает улучшить производительность звуковой схемы.

    Полистирольный пластинчато-диэлектрический блок

    Полистирольные конденсаторы изготавливаются путем намотки пластинчато-диэлектрического блока, подобного электролитическому, или путем укладки в последовательные слои, например, книгу (сложенная пленка-фольга). В основном они используются в качестве диэлектриков из различных пластиков, таких как полипропилен (MKP), полиэфир / майлар (MKT), полистирол, поликарбонат (MKC) или тефлон. Для пластин используют алюминий с высокой степенью чистоты.

    В зависимости от типа используемого диэлектрика производятся конденсаторы разных размеров и емкости с рабочим напряжением. Высокая диэлектрическая прочность полиэфира позволяет изготавливать лучшие электролитические конденсаторы для звука небольшого размера и при относительно низких затратах для повседневного использования, когда особые качества не требуются. Возможны емкости от 1 000 пФ до 4,7 микрофарад при рабочих напряжениях до 1 000 В.

    Коэффициент диэлектрических потерь в полиэфире относительно высок. Для аудио полипропилен или полистирол могут значительно снизить диэлектрические потери, но здесь следует отметить, что они намного дороже. Полистирольные используются в фильтрах / кроссоверах. Одним недостатком полистирольных конденсаторов является низкая температура плавления диэлектрика. Вот почему полипропиленовые конденсаторы для звука обычно отличаются друг от друга, так как диэлектрик защищен путем отделения паяных выводов от корпуса конденсатора.

    Технология FIM с высокой плотностью энергии

    Пленочные CAP большой мощности предлагают три категории этого типа: TRAFIM (стандартная и специальная), FILFIM и PPX. Технология FIM основана на концепции контролируемых самовосстанавливающихся свойств сегментированных пленок металлизации алюминия.

    Емкость разделена на несколько миллионов элементарных элементов, объединенных и защищенных плавкими предохранителями. Слабые диэлектрические элементы изолированы, а перед перфорацией предохранителей изолируют поврежденные элементы, с которыми конденсатор продолжает работать в обычном режиме без короткого замыкания или взрыва, как это может быть в случае электролитических конденсаторов для звука.

    При благоприятных условиях не следует ожидать, что ожидаемый срок службы CAP этого типа превысит 200 000 часов, а MTBF — 10 000 000 часов. Работая как батарея, эти конденсаторы потребляют небольшую часть емкости из-за постепенного разрушения отдельных элементов в течение срока службы компонента.

    Серии TRAFIM и FILFIM предлагают непрерывную фильтрацию для высоких напряжений / мощностей (до 1 кВ). Емкость варьируется:

    • от 610 мкФ до 15 625 мкФ для стандартного TRAFIM;
    • от 145 мкФ до 15 460 мкФ для специального TRAFIM;
    • от 8,2 мкФ до 475 мкФ для FILFIM.

    Диапазон постоянного напряжения составляет:

    • от 1,4 кВ до 4,2 кВ для стандартного TRAFIM;
    • от 1,3 кВ до 5,3 кВ для персонализированного TRAFIM;
    • и от 5,9 кВ до 31,7 кВ для FILFIM.

    Конденсаторы серии PPX предлагают полный спектр сетевых решений для защиты от помех в тиристорах GTO, а также для блокирующих CAP, предлагая емкость от 0,19 мкФ до 6,4 мкФ. Диапазон напряжения для PPX колеблется от 1 600 В до 7 500 В с очень низкой собственной индуктивностью.

    Пленочные конденсаторы для звука, как правило, имеют отличные высокочастотные характеристики, но это часто компрометируется большими размерами и компенсируется большой длиной провода. Можно заметить, что у маленького радиального конденсатора Panasonic собственный резонанс намного выше (9,7 МГц), чем у Audience (4,5 МГц). Это не из-за установленной тефлоновой крышки, а из-за того, что она имеет длину в несколько дюймов и не может быть присоединена к корпусу. Если разработчику нужны высокочастотные характеристики для поддержания стабильности в широкополосных полупроводниках, уменьшают размер и длину провода до абсолютного минимума.

    Производительность звуковых цепей сильно зависит от пассивных компонентов, таких как конденсаторы и резисторы. Фактические CAP содержат нежелательные паразитные компоненты, которые могут значительно искажать характеристики аудиосигналов. Конденсаторы, используемые в тракте сигнала, в значительной степени определяют качество аудиосигнала. В результате требуется тщательный выбор CAP, чтобы минимизировать ухудшение сигнала.

    Конденсаторы класса аудио оптимизированы для удовлетворения потребностей современных высококачественных аудиосистем. Пластиковые пленочные конденсаторы для звука используются в высококачественных аудиосистемах и имеют широкий спектр применения.

    Источник

    abc-import.ru

    Электролитические конденсаторы в усилителях мощности

    Электролитические конденсаторы характеризуются большими потерями электролитического тока, невысокой граничной частотой, замедленными процессами поляризации в диэлектрике (диэлектрическая абсорбция), посредственными показателями эквивалентного сопротивления и плохими импульсными характеристиками. При обычной работе электролитических конденсаторов выявляется их недолговечность и низкая надёжность.

    Через диэлектрик состоящий из окисла электролита (сепаратор) протекает ионный ток. Ионы движутся на много медленнее электронов, а длина их пробега, несмотря на небольшую толщину сепаратора, в десятки тысяч раз превышает толщину последнего. При протекании ионного тока выделяется тепловая энергия, что вызывает нагрев сепаратора и сокращает надежность и срок службы электролитического конденсатора.

    Присутствие ионного тока и асимметричная конструкция электролитического конденсатора являются причиной высокого уровня внутренних шумов и нелинейных искажений. Всё эти недостатки вызывают инертность электролитического конденсатора и воздействует на звук в виде искусственной компрессии.

    Фото современных — высококачественных электролитических конденсаторов которые мы применяем только во второстепенных цепях: EVOX RIFA (Sweden), PANASONIC FM (Japan/China), SANYO OSCON (Japan).

    Тест электролитических конденсаторов

    Конденсаторы построены в порядке убывания качества звука * * * * *.

    Все протестированные электролитические конденсаторы здорово уступают среднему по стоимости и качеству звука плёночному конденсатору Solen.

    * * * * * BLACK GATE N (Japan) — самый сбалансированный по звуку конденсатор среди всех тестируемых. Давно снят с производства — есть современные анти звуковые подделки.

    * * * * * EVOX RIFA PEG 124 (Sweden) — звук напоминает бумажный конденсатор — глубокие низкие частоты и красивая середина, немного не хватает верхних частот — это легко выправляется шунтированием «быстрой плёночной» ёмкостью 0.15- 0.01мкф. Выпускается в ограниченном количестве и применяется в военной — бортовой / силовой электронике, в авто / судо / космос / самолётостроении. Конденсатор низкоимпедансный, высокотемпературный — 150гр/ц и обладает повышенной надёжностью.

    * * * * BLACK GATE FK (Japan) — правильно сбалансирован по всему частотному диапазону, но проиграл «EVOX RIFA PEG 124» по качеству воспроизведения низких и средних частот. Давно снят с производства — есть современные анти звуковые подделки.

    * * * SANYO OSCON (Japan) — самый непонятный электролитический конденсатор, в разных схемах разный звуковой подчерк. По сравнению с другими звук трудно объяснимый — можно сказать «сладкий». В начале подкупает, а потом чувствуешь искусственность, ненатуральность. Лучшее применение — шунтирование катодного резистора. В полупроводниковой схеме хорошо показал себя в обратной связи.

    * * ELNA CERAFINE (Japan / China) — провал на средних частотах, излишний акцент на высоких. Применяется в современных дорогостоящих High End Audio изделиях. Выдаёт звук на уровне «PANASONIC FM» и здорово уступает всем другим протестированным конденсаторам.

    Надпись «Audio» на современных электролитических конденсаторах констатирует — это обыкновенный, серийный, низкоимпедансный, электролитический конденсатор повышенной стоимости (только за надпись «Audio»).

    Всем пользователям хорошо знакомы с «глюки» мониторов, компьютеров, телеприёмников и.т.д. — это наглядная и негативная работа электролитических конденсаторов (любых производителей). Самые нелепые неполадки радиоаппаратуры происходящие в электронной природе провоцируют исключительно электролиты. Если схема тупо «глючит» — меняйте «кондёры» и проблема будет решена на 100%.

    Малейшее вздутие верхней части корпуса говорит — конденсатор пробит и никаким заряд/разрядом его не восстановить.

    Качество звучания современных электролитов оставляет желать лучшего, но выпускать серийный High End Audio аппарат без электролитических конденсаторов не имеет коммерческого смысла — сложно, дорого, габаритно.

    Тайваньские бренды —  производители высококачественных компьютерных материнских плат и видео карт полностью отказались от применения своих собственных электролитических конденсаторов — «глючат» и взрываются.

    Современное японо-американо-европейское производство электролитических конденсаторов стремительно стремится к развивающемуся социализму — China, в итоге имеем: «мя-у» звук.

    Гасящий конденсатор вместо гасящего резистора

    grimmi.ru

    2QM.ru: Какие конденсаторы лучше для звука: виды, классификация и особенности звучания

    Конденсаторы (Capacitors, CAP) являются важными компонентами в аудиосистемах. Они имеют различные показатели напряжения, тока и форм-факторов. Для того чтобы выбрать, какие конденсаторы лучше для звука, модераторам нужно разбираться во всех параметрах CAP. Целостность аудиосигнала во многом зависит от выбора конденсаторов. Поэтому при выборе правильного устройства необходимо учитывать все важные факторы.

    Параметры CAP аудиосигнала специально оптимизированы для высокопроизводительных приложений и предлагают более эффективные аудиоканалы, чем стандартные компоненты. Типы конденсаторов, которые обычно используются в аудиоканалах, представляют собой алюминиевые электролитические и пленочные CAP, а какие конденсаторы лучше для звука в конкретных условиях, зависит от используемых схем и устройств: громкоговорителей, проигрывателей компакт-дисков и музыкальных инструментов, бас-гитар и других.

    Содержание статьи

    История звукового конденсатора

    Конденсатор является одним из старейших электронных компонентов. Электрические проводники были обнаружены в 1729 году. В 1745 году немецкий изобретатель Эвальд Георг фон Клейст обнаружил лейденский сосуд, который стал первым CAP. Физик Питер ван Мюссенбрук — физик из Лейденского университета открыл лейденскую банку самостоятельно в 1746 году.

    В настоящее время лейденская банка представляет собой стеклянный сосуд, покрытый металлической фольгой внутри и снаружи. CAP служит средством хранения электричества, а какие конденсаторы лучше для звука будет зависеть от емкости, ведь чем больше этот показатель, тем больше электроэнергии он будет хранить. Емкость зависит от размера противоположных пластин, расстояния между пластинами и характера изолятора между ними.

    Конденсаторы, используемые в усилителях звука, бывают нескольких типов, например, обычный CAP с металлической фольгой для обеих пластин и пропитанной бумагой между ними. Конденсаторы с металлизированной бумагой (MP), также называемые бумажно-масляными CAP и металлизированные бумажные однослойные конденсаторы (МБГО) для звука, которые используются в цепях переменного, постоянного и импульсного тока.

    Позже майлар (полиэстер) и другие синтетические изоляторы стали более распространенными. В шестидесятые годы прошлого века металлический CAP с майларом стал очень популярным. Две сильные стороны этих устройств — меньший размер и тот факт, что они являются самовосстанавливающимися. Сегодня это лучшие конденсаторы для звука, они используются практически в каждом электронном устройстве. Из-за огромных объемов торговли и производства таких типов конденсаторов они довольно дешевы.

    Другой тип CAP — электролитический со специальной конструкцией с преимущественно высокими и очень высокими значениями в диапазоне от 1 мкФ до нескольких десятков тысяч мкФ. Они в основном используются для развязки или фильтрации в блоке питания. Наиболее распространенными в конструкции усилителей являются металлизированные майларовые или полиэфирные конденсаторы (МКТ). В усилителях более высокого качества в основном используется металлизированный полипропилен (МКП).

    Технология изготовления компонентов

    Технология CAP во многом определяет характеристики устройств, а какие конденсаторы лучше для звука зависит от класса оборудования. Высококлассные изделия имеют жесткие допуски и стоят дороже, чем конденсаторы широкого применения. Кроме того, такие высококачественные CAP могут быть многоразовыми. Высококачественные аудиосистемы требуют высококачественных CAP для обеспечения высшего класса качества звука.

    Производительность или то, как влияют конденсаторы на звук, во многом зависит от того, как они припаиваются к печатной плате. Пайка вызывает напряжение в пассивных компонентах, что может привести к появлению пьезоэлектрических напряжений и растрескиванию поверхностно установленных CAP. При пайке конденсаторов необходимо использовать правильный порядок пайки и следовать рекомендациям профиля.

    Все лавсановые конденсаторы для звука неполяризованные, то есть им не нужно маркировать вывод как положительный, так и отрицательный. Их соединение в цепи не имеет значения. Они предпочтительны в высококачественных звуковых цепях из-за низких потерь и уменьшенных искажений, если при этом позволяет размер изделия.

    MKC металлизированный поликарбонатный тип уже практически не используется. Известно, что типы ERO MKC все еще широко применяются, потому что имеют сбалансированный музыкальный звук с очень небольшой окраской. Типы MKP имеют более яркий звук, а также отличаются большим диапазоном звучания.

    Малоизвестный тип конденсатора MKV — это металлизированный полипропиленовый CAP в масле. Это лучший конденсатор для звука, поскольку обладает более мощными характеристиками, чем металлизированная бумага в масле.

    Качество пассивных элементов

    Конденсаторы, особенно когда они находятся на выходной сигнальной линии, сильно влияют на качество звука аудиосистемы.

    Есть несколько факторов, которые определяют качество CAP, несомненно, очень важные для аудио:

  • Толерантность и фактическая емкость, необходимые для использования в фильтрах.
  • Зависимость емкости от частоты, так 1 микрофарад на 1 000 Гц не означает 1 микрофарад при 20 кГц.
  • Внутреннее сопротивление (ESR).
  • Ток утечки.
  • Старение — фактор, который со временем будет развиваться для любого продукта.
  • Лучший выбор приложений конденсатора зависит от применения в цепи и необходимой емкости:

  • Диапазон от 1 пФ до 1 нФ — схемы управления и обратной связи. Этот диапазон в основном используется для устранения высокочастотного шума на аудиоканале или для целей обратной связи, таких как мост усилителя Quad 606. Конденсатор СГМ в звуке является лучшим выбором в этом диапазоне. Он имеет очень хорошую толерантность (до 1 %) и очень низкие искажения и шум, но довольно дорогой. МКС или МКП — это хорошая альтернатива. На сигнальной линии следует избегать керамических CAP, поскольку они могут вызвать дополнительные нелинейные искажения до 1 %.
  • От 1 нФ до 1 мкФ — сцепление, развязка и подавления колебаний. Они чаще всего используются в аудиосистемах, а также между этапами, когда существует разница в уровне постоянного тока, устранение вибраций и в схемах обратной связи. Как правило, пленочные конденсаторы будут использоваться в этом диапазоне до 4,7 микрофарад. Лучшим выбором конденсатора для звука и аудио является полистирол (МКС), полипропилен (МКП). Полиэтилен (МКТ) является альтернативой с более низкой ценой.
  • 1 Ф и выше — источники питания, выходные конденсаторы, фильтры, изоляция. Преимущество очень высокая емкость (до 1 Farad). Но есть несколько недостатков. Электролитические CAP подлежат старению и сушке. Через 10 или более лет масло высыхает, а важные факторы, такие как СОЭ, меняются. Они поляризованы и должны быть заменены каждые 10 лет, иначе негативно повлияют на звук. При проектировании соединительного контура электролитов на сигнальной линии часто можно избежать проблем путем пересчета константы времени (RxC) для низкой емкости ниже 1 микрофарада. Это поможет определить, какие электролитические конденсаторы лучше для звука. Если это невозможно, важно, чтобы электролит имел менее 1 В постоянного тока и использовался CAP высокого качества (BHC Aerovox, Nichicon, Epcos, Panasonic).
  • Выбрав лучшее решение для каждой программы, разработчик может достичь наилучшего качества звука. Инвестирование в высококачественные CAP оказывает положительное влияние на качество звука, больше чем в любой другой компонент.

    Тестирование CAP-элементов для приложений

    Существует общее понимание о том, что различные CAP могут изменять качество звука в аудиоприкладных программах в различных условиях. Какие конденсаторы установить, в каких схемах и в каких условиях — остаются самыми обсуждаемыми темами у специалистов. Именно поэтому лучше не изобретать велосипед в этой сложной теме, а использовать результаты проверенных испытаний. Некоторые звуковые схемы, как правило, очень большие, а загрязнение в звуковой окружающей среде, например, в таких как заземления и шасси, может быть большой проблемой для качества. Рекомендуется добавлять нелинейность и природные искажения к тесту, проверяя остатки моста с нуля.

    Диэлектрический

    Полистирол

    Полистирол

    Полипропилен

    Полиэстер

    Silver-слюда

    Керамический

    Polycarb

    Температура

    72

    72

    72

    72

    72

    73

    72

    Уровень напряжения

    160

    63

    50

    600

    500

    50

    50

    Толерантность %

    2.5

    1

    2

    10

    1

    10

    10

    Ошибка %

    2,18%

    0,28%

    0,73%

    -7,06%

    0,01%

    -0,09%

    -1,72%

    Рассеивание

    0.000053

    0.000028

    0.000122

    0.004739

    0.000168

    0.000108

    0.000705

    Абсорбция

    0,02%

    0,02%

    0,04%

    0,23%

    0,82%

    0,34%

    н /

    DCR, 100 В

    3.00E + 13

    2.00E + 15

    3.50E + 14

    9.50E + 10

    2.00E + 12

    3.00E + 12

    н /

    Фаза, 2 МГц

    -84

    -84

    -86

    -84

    -86

    -84

    н /

    R, 2 МГц

    6

    7,8

    9,2

    8,5

    7,6

    7,6

    н /

    Собственное разрешение, МГц

    7

    7,7

    9,7

    7,5

    8,4

    9,2

    н /

    Мост

    низкий

    низкий

    очень низкий

    высоко

    низкий

    низкий

    высоко

    Характеристики моделей

    В идеальном случае разработчик ожидает, что конденсатор будет точно соответствовать его проектному значению, в то время как большинство других параметров будут нулевыми или бесконечными. Основные измерения емкости здесь не так заметны, поскольку детали обычно соответствуют допускам. Все пленочные CAP имеют значительный температурный коэффициент. Поэтому, чтобы определить, какие пленочные конденсаторы лучше для звука, проводят тестирование лабораторными приборами.

    Коэффициент диффузии полезен при оценке эффективности электролитического источника питания. Это влияние на звуковые характеристики сигнальных CAP не согласовано и может быть весьма незначительным. Число представляет внутренние потери и при желании может быть преобразовано в эффективное последовательное сопротивление (ESR).

    ESR не является постоянной величиной, но имеет тенденцию быть настолько низким в высококачественных конденсаторах, что не оказывает большого влияния на производительность схемы. Если бы были построены резонансные схемы с высоким Q, то это была бы совершенно другая история. Однако низкий коэффициент рассеяния является отличительной чертой хороших диэлектриков, что может служить хорошей подсказкой в дальнейших исследованиях.

    Диэлектрическое поглощение может быть более тревожным. Это было серьезной проблемой с ранними аналоговыми компьютерами. Высокого диэлектрическое поглощения можно избежать, так слюдяные конденсаторы для звука могут обеспечить сети RIAA очень хорошим звуком.

    Измерения утечки постоянного тока не должны влиять на что-либо, так как сопротивление любого сигнального конденсатора должно быть очень высоким. При использовании материалов с более высокой диэлектрической проницаемостью требуется меньшая площадь поверхности, тогда утечка будет практически несущественной.

    Для материалов с более низкой диэлектрической проницаемостью, таких как тефлон, несмотря на его основное высокое удельное сопротивление, может потребоваться большая площадь поверхности. Тогда утечка может быть вызвана малейшим загрязнением или примесями. Утечка постоянного тока, вероятно, является хорошим средством контроля качества, но она не связана с качеством звука.

    Нежелательные паразитарные компоненты

    Транзисторы, интегральные схемы и другие активные компоненты оказывают существенное влияние на качество аудиосигналов. Они используют питание от источников тока для изменения характеристик сигнала. В отличие от активных компонентов, идеальные пассивные не потребляют энергию и не должны изменять сигналы.

    В электронных схемах резисторы, конденсаторы и индукторы фактически ведут себя, как активные компоненты и потребляют энергию. Из-за этих паразитных эффектов они могут значительно изменить звуковые сигналы, и для повышения качества требуется тщательный выбор компонентов. Постоянно растущий спрос на аудиооборудование с лучшим качеством звука заставляет производителей CAP выпускать устройства с лучшими характеристиками. В результате чего современные конденсаторы для использования в аудиоприложениях имеют лучшую производительность и более высокое качество звука.

    Паразитные эффекты CAP в акустической цепи состоят из эквивалентного последовательного сопротивления (ESR), эквивалентной последовательной индуктивности (ESL), последовательных источников напряжения из-за эффекта Зеебека и диэлектрического поглощения (DA).

    Типичное старение, изменения в рабочих условиях и специфические характеристики делают эти нежелательные паразитные компоненты более сложными. Каждый паразитарный компонент по-разному влияет на производительность электронной схемы. Начнем с того, что эффект сопротивления вызывает утечку постоянного тока. В усилителях и других схемах, содержащих активные компоненты, эта утечка может привести к значительному изменению напряжения смещения, которые могут влиять на различные параметры, включая коэффициент качества (Q).

    Способность конденсатора обрабатывать пульсации и пропускать высокочастотные сигналы зависит от компонента ESR. Небольшое напряжение создается в точке, где два неоднородных металла связаны из-за явления, известного как эффект Зеебека. Небольшие батареи из-за этих паразитных термопар могут существенно повлиять на производительность схемы. Некоторые диэлектрические материалы являются пьезоэлектрическими, а шум, который они добавляют к конденсатору, проявляется из-за маленькой батареи внутри компонента. Кроме того, электролитические CAP имеют паразитные диоды, которые могут вызывать изменения в смещении или характеристиках сигнала.

    Параметры, влияющие на путь прохождения сигнала

    В электронных схемах пассивные компоненты используются для определения усиления, установления блокировки постоянного тока, подавления шума источника питания и обеспечения смещения. Недорогие компоненты с небольшими размерами обычно используются в портативных аудиосистемах.

    Характеристики реальных полипропиленовых конденсаторов для звука отличаются от характеристик идеальных компонентов с точки зрения ESR, ESL, диэлектрического поглощения, тока утечки, пьезоэлектрических свойств, температурного коэффициента, допуска и коэффициента напряжения. Хотя важно учитывать эти параметры при разработке CAP для использования в тракте аудиосигнала, два из них, оказывающие наибольшее влияние на путь прохождения сигнала, называют коэффициентом напряжения и обратным пьезоэлектрическим эффектом.

    Как конденсаторы, так и резисторы демонстрируют изменение физических характеристик при изменении приложенного напряжения. Это явление обычно называют коэффициентом напряжения, и оно варьируется в зависимости от химического состава, конструкции и типа CAP.

    Обратный пьезоэффект влияет на номинальное электрическое значение конденсаторов для усилителя звука. В аудиоусилителях это изменение электрического значения компонента приводит к изменению усиления в зависимости от сигнала. Этот нелинейный эффект приводит к искажению звука. Обратный пьезоэлектрический эффект вызывает значительные искажения аудиосигнала на более низких частотах и является основным источником коэффициента напряжения в керамических CAP класса II.

    Напряжение, приложенное к CAP, влияет на его производительность. В случае керамических CAP класса II, емкость компонента уменьшается, когда прикладывается возрастающее положительное постоянное напряжение. Если к нему подается высокое напряжение переменного тока, емкость компонента уменьшается аналогичным образом. Однако, когда прикладывается низкое переменное напряжение, емкость компонента имеет тенденцию к увеличению. Эти изменения в емкости могут значительно повлиять на качество аудиосигналов.

    Общая характеристика гармонических искажений THD

    THD конденсаторов для звука зависит от диэлектрического материала компонента. Некоторые из них могут давать впечатляющие характеристики THD, в то время как другие могут серьезно ухудшить его. Полиэфирные конденсаторы и алюминиевые электролитические конденсаторы относятся к числу CAP, которые дают самое низкое значение THD. В случае диэлектрических материалов класса II, X7R предлагает лучшие характеристики именно THD.

    CAP для использования в аудиооборудовании обычно классифицируются в соответствии с применением, для которого они используются. Три приложения: путь прохождения сигнала, функциональные задачи и приложения поддержки напряжения. Обеспечение использования оптимальных конденсатор MKT для звука в этих трех областях помогает улучшить выходной тон и уменьшить искажения звука. Полипропиленовые имеют низкий коэффициент рассеяния и подходят для всех трех областей. Хотя все CAP, используемые в аудиосистеме, влияют на качество звука, компоненты, находящиеся на пути прохождения сигнала, оказывают наибольшее влияние.

    Использование высококачественных конденсаторов класса аудио помогает значительно снизить ухудшение качества звука. Из-за их превосходной линейности пленочные конденсаторы обычно используются в аудиотракте. Эти неполярные конденсаторы для звука идеально подходят для аудиотехники премиум-класса. Диэлектрики, обычно применяемые в конструкциях пленочных конденсаторов с качеством звука для использования на пути прохождения сигнала, включают полиэфир, полипропилен, полистирол и полифениленсульфид.

    CAP для использования в предварительных усилителях, цифро-аналоговых преобразователях, аналого-цифровых преобразователях и аналогичных приложениях совместно классифицируются как функциональные конденсаторы задания. Хотя эти неполярные конденсаторы для звука не находятся на пути прохождения сигнала, они тоже могут значительно ухудшить качество аудиосигнала.

    Конденсаторы, которые используются для поддержания напряжения в аудиооборудовании, оказывают минимальное влияние на звуковой сигнал. Несмотря на это, требуется внимание при выборе CAP, которые поддерживают напряжение для оборудования высокого класса. Использование компонентов, оптимизированных для аудио приложений, помогает улучшить производительность звуковой схемы.

    Полистирольный пластинчато-диэлектрический блок

    Полистирольные конденсаторы изготавливаются путем намотки пластинчато-диэлектрического блока, подобного электролитическому, или путем укладки в последовательные слои, например, книгу (сложенная пленка-фольга). В основном они используются в качестве диэлектриков из различных пластиков, таких как полипропилен (MKP), полиэфир / майлар (MKT), полистирол, поликарбонат (MKC) или тефлон. Для пластин используют алюминий с высокой степенью чистоты.

    В зависимости от типа используемого диэлектрика производятся конденсаторы разных размеров и емкости с рабочим напряжением. Высокая диэлектрическая прочность полиэфира позволяет изготавливать лучшие электролитические конденсаторы для звука небольшого размера и при относительно низких затратах для повседневного использования, когда особые качества не требуются. Возможны емкости от 1 000 пФ до 4,7 микрофарад при рабочих напряжениях до 1 000 В.

    Коэффициент диэлектрических потерь в полиэфире относительно высок. Для аудио полипропилен или полистирол могут значительно снизить диэлектрические потери, но здесь следует отметить, что они намного дороже. Полистирольные используются в фильтрах / кроссоверах. Одним недостатком полистирольных конденсаторов является низкая температура плавления диэлектрика. Вот почему полипропиленовые конденсаторы для звука обычно отличаются друг от друга, так как диэлектрик защищен путем отделения паяных выводов от корпуса конденсатора.

    Технология FIM с высокой плотностью энергии

    Пленочные CAP большой мощности предлагают три категории этого типа: TRAFIM (стандартная и специальная), FILFIM и PPX. Технология FIM основана на концепции контролируемых самовосстанавливающихся свойств сегментированных пленок металлизации алюминия.

    Емкость разделена на несколько миллионов элементарных элементов, объединенных и защищенных плавкими предохранителями. Слабые диэлектрические элементы изолированы, а перед перфорацией предохранителей изолируют поврежденные элементы, с которыми конденсатор продолжает работать в обычном режиме без короткого замыкания или взрыва, как это может быть в случае электролитических конденсаторов для звука.

    При благоприятных условиях не следует ожидать, что ожидаемый срок службы CAP этого типа превысит 200 000 часов, а MTBF — 10 000 000 часов. Работая как батарея, эти конденсаторы потребляют небольшую часть емкости из-за постепенного разрушения отдельных элементов в течение срока службы компонента.

    Серии TRAFIM и FILFIM предлагают непрерывную фильтрацию для высоких напряжений / мощностей (до 1 кВ). Емкость варьируется:

    • от 610 мкФ до 15 625 мкФ для стандартного TRAFIM;
    • от 145 мкФ до 15 460 мкФ для специального TRAFIM;
    • от 8,2 мкФ до 475 мкФ для FILFIM.

    Диапазон постоянного напряжения составляет:

    • от 1,4 кВ до 4,2 кВ для стандартного TRAFIM;
    • от 1,3 кВ до 5,3 кВ для персонализированного TRAFIM;
    • и от 5,9 кВ до 31,7 кВ для FILFIM.

    Конденсаторы серии PPX предлагают полный спектр сетевых решений для защиты от помех в тиристорах GTO, а также для блокирующих CAP, предлагая емкость от 0,19 мкФ до 6,4 мкФ. Диапазон напряжения для PPX колеблется от 1 600 В до 7 500 В с очень низкой собственной индуктивностью.

    Пленочные конденсаторы для звука, как правило, имеют отличные высокочастотные характеристики, но это часто компрометируется большими размерами и компенсируется большой длиной провода. Можно заметить, что у маленького радиального конденсатора Panasonic собственный резонанс намного выше (9,7 МГц), чем у Audience (4,5 МГц). Это не из-за установленной тефлоновой крышки, а из-за того, что она имеет длину в несколько дюймов и не может быть присоединена к корпусу. Если разработчику нужны высокочастотные характеристики для поддержания стабильности в широкополосных полупроводниках, уменьшают размер и длину провода до абсолютного минимума.

    Производительность звуковых цепей сильно зависит от пассивных компонентов, таких как конденсаторы и резисторы. Фактические CAP содержат нежелательные паразитные компоненты, которые могут значительно искажать характеристики аудиосигналов. Конденсаторы, используемые в тракте сигнала, в значительной степени определяют качество аудиосигнала. В результате требуется тщательный выбор CAP, чтобы минимизировать ухудшение сигнала.

    Конденсаторы класса аудио оптимизированы для удовлетворения потребностей современных высококачественных аудиосистем. Пластиковые пленочные конденсаторы для звука используются в высококачественных аудиосистемах и имеют широкий спектр применения.

    Источник: fb.ru

    2qm.ru

    Ламповые усилители, применение конденсаторов | paseka24.ru

    Уважаемые телезрители. Ниже рассмотрены общие сведения о применении в ламповых усилителях электрических конденсаторов. Использованы материалы статьи неизвестного автора в моей трансляции и редактуре. Исследовательская оценка результатов измерения искажений, вносимых в сигналы конденсаторами рассмотрен в материале, описанном ниже. По этому показателю выполнено сравнение нескольких наиболее распространенных типов конденсаторов. Статья создана неизвестным мне телезрителем, но местами обстоятельно, хотя использованы только конденсаторы, которые были в наличии. Конденсаторы имели разные емкости, поэтому исследование выполнено на разных частотах и напряжения на них подавались не совсем одинаковые. Понятно, что по-хорошему, нужно провести измерения в абсолютно одинаковых условиях: и частота, и напряжение должны быть одинаковыми. Кроме того измерять нужно на нескольких частотах и с разными напряжениями. Кроме того важна статистика, поэтому было взять по нескольку штук одинаковых конденсаторов. Следовательно, результаты измерения надо рассматривать как субъективную точку зрения. Однако, если установлено большое различие, то можно предположить, что какой-то из типов конденсаторов уступает в качестве. А вот если различие режимных характеристик маленькое, то вполне возможно и качество конденсаторов отличается не существенно. Измерения проведены только для коэффициента гармоник. Влияние проходных конденсаторов на звук оценивается через понятие линейности. Видимо если после конденсатора стоит резистор в десятки кОм, то нет никакой разницы между конденсатором с ESR=0,01 Ом и конденсатором с ESR=0,001 Ом! Эти доли Ома потеряются уже на фоне сопротивления выводов, пайки и дорожек. А вот если Кг усилителя наполовину состоит из Кг конденсатора, то это нехорошо. Результаты оказались довольно поучительными, найдены типы конденсаторов хорошие, плохие и ужасные. Измерения проведены по схеме, показанной на рисунке, без методических погрешностей.

    Со звуковой карты подавалось синусоидальное напряжение амплитудой не более 2 вольт, резистор подбирался так, чтобы напряжение на конденсаторе было в пределах 2…2,5 В амплитудного (примерно 1,5 вольта действующего) значения. Кроме напряжения на конденсаторе, измерялось и выходное напряжение звуковой карты, чтобы контролировать ее искажения. Из результата измерений видно, что искажения самой карты намного меньше, и не влияют на точность. Искажения карты вычитались из результатов. Вычитание выполнено корректно, через корень квадратный из разности квадратов амплитуд соответствующей гармоники.

    Для того, чтобы показать точность измерений, показаны два спектра тока конденсатора. Дальше эти спектры обработаны для большей наглядности. В расчетах учитывались только гармоники, помехи не учитывались.

    Еще один важный момент – особенности вычисления коэффициента гармоник Кг. Кроме получения результата по известной формуле, расположенной слева, проведено вычисление нормированного Кг к номеру гармоники k по формуле справа.

    Этот способ нормирования придумали инженеры из лаборатории английской компании ВВС в 50-х годах ХХ века. И такой способ, когда напряжение гармоники умножается на квадрат ее номера, позволяет учесть ширину спектра гармоник. Зачем это нужно? А затем, что чем больше порядок нелинейности и шире спектр гармоник, тем хуже звук. Ниже на рисунке показан пример.

    Все три варианта спектра искажений дают одинаковый Кг=0,1%. Но зеленый спектр содержит только две гармоники и на слух такие искажения заметны меньше. Красный спектр содержит гармоники вплоть до 10-й, и на слух самый плохой. А Кг у у всех трёх спектров одинаковый и не позволяет эти спектры различить. А нормированный К’г даст для этих спектров такие значения: 0,12%; 0,18% и 0,33%, вот такая разница. Это просто модификация обычного метода, но более совершенная. Если традиционный Кг позволяет учитывать только среднюю величину нелинейности передаточной характеристики, то нормированный позволяет учесть и порядок этой нелинейности. И, несмотря на то, что он очень далек от совершенства и не в полной мере соответствует слуховым ощущениям, он все же лучше, чем традиционный Кг. Иными словами обычный Кг меньше кореллирует с субъективными ощущениями, чем нормированный. В результатах измерений коэффициент гармоник нормирован ко второй гармонике и его физический смысл — показать среднюю нелинейность, учитывая, насколько высшие гармоники хуже второй.

     Дальше будет видно, что у конденсаторов EPKOS и К73-16 коэффициент гармоник одинаков и равен 0,0017%. Значит ли это, что конденсаторы одинаковы? Очень может быть, что и нет. А вот если посмотреть на нормированные коэффициенты, то у EPKOSа К’г=0,0053%, а у К73-16 К’г=0,0091%. Т.е. отечественный лавсановый конденсатор имеет более широкий спектр гармоник и есть вероятность, что он хуже звучит, чем импортный полипропиленовый. Обычные Кг также приведены в таблицах. Ниже на рисунке показаны конденсаторы исследованных типов.

    Конденсаторы керамические К10-17а и КМ-5, лавсановые пленочные К73-16 и К73-17, фторопластовый ФТ1 и полипропиленовые отечественные К78-2, К78-19 и импортный EPCOS. Марку конденсатора, расположенного в центре верхнего ряда я не знаю, скорее всего китайский. Есть подозрение, что это пленочный конденсатор. На самом деле темно-зеленого цвета, его будем называть Азиатским. На спектрограммах красный спектр — ток конденсатора, синий — выход звуковой карты.

    1. Исследование спектрограммы тока керамического конденсатора К10-17а

    Измеренные значения таковы: Кг = 0,83% , К’г = 2,2%. Страшно? Есть такое. Эти конденсаторы могут нравиться за хороший ТКЕ (температурный коэффициент емкости). Искажениями при этом лучше не интересоваться. А если глянуть, то станет ясно, всё очень плохо. Причем спектр гармоник очень широкий. Вывод: не использовать для звука.

    2. Исследование спектрограммы тока керамического конденсатора КМ-5 [тип К10-73]

    Измеренные значения таковы: Кг = 2,1% , К’г = 6,1%. Это вообще какой-то кошмар. Было подозрение, что это плохие конденсаторы, предполагал, что их искажения такие большие и могут быть даже с полпроцента. Но оказалось, что все намного-намного хуже. А если учесть, что их емкость очень сильно зависит от температуры, то результат очевиден. Обратите внимание — подключение этого конденсатора на выход звуковухи сразу создает ей целую кучу гармоник. Т.е. и выходное напряжение искажается из-за этого конденсатора. Вывод: держать такие конденсаторы подальше от звуковых схем. Не следует рекомендовать их и в цепях питания звуковых устройств.

     Есть примечание. В разных совдеп-конденсаторах используется совершенно разная керамика. Если емкость маленькая, то керамика может быть довольно качественная, с хорошей линейностью и температурной стабильностью. Когда же нужно получить высокую емкость при малых габаритах, то нередко используют керамику плохого качества — и линейность очень плохая, и термостабильности никакой .При нагреве на 20 градусов емкость может измениться в 2…3 раза. И еще и сегнетоэлектрический эффект может присутствовать — конденсатор работает и как пьезо-динамик и как пьезо-микрофон. Причем производитель не сообщает, в каком именно конденсаторе какая керамика. Желательно бы указывать типы керамики и типы диэлектрика. Тогда было бы понятнее — у конденсаторов этого типа емкость небольшая, зато стабильность и линейность хорошие, а у конденсаторов другого типа емкость высокая, но за счет качества. Почему, например конденсаторы К10-7а казались хорошими? У них большой корпус по сравнению с КМ-5 и хороший ТКЕ. Поэтому можно подумать, что этот большой корпус заполнен большим количеством качественной керамики. Но оказалось, что там керамика хоть и получше, чем у КМ-5, но, всё же, очень мала. Пример поломатых конденсаторов (каждый из них 0,1 мкФ) показан ниже.

    Душераздирающее зрелище, в таком большом корпусе такой маленький кристалл. Теперь понятно, почему линей-ность плохая, стенки у корпуса толстые, а конденсатора внутри мало. А вот предположение, что больший по раз-мерам конденсатор (при той же ёмкости) может иметь более высокое рабочее напряжение, вполне разумно. Кри-сталл там побольше, вероятно из-за большей толщины диэлектрика.

    3. Исследование спектрограммы тока пленочного конденсатора К73-16 (лавсан)

    Измеренные значения таковы: Кг = 0,0017% , К’г = 0,0091%. Даже по картинке видно, что это совсем другое дело. Если бы не было «хвоста» из гармоник довольно высокого порядка, то результат оказался бы вовсе превосходным. Вывод: Использовать К73-16 для звука можно.

    4. Исследование спектрограммы тока плёночного конденсатора К73-17 (лавсан)

    Измеренные значения таковы: Кг = 0,0019% , К’г = 0,0074%. Есть интересная особенность. Обычный Кг у него выше, чем у предыдущего, а нормированный — меньше. Видимо это потому, что 3-я, 4-я и 5-я гармоники у него чуть-чуть выше, а зато 11-й нет совсем. Да и «нехорошие» 8-я и 9-я заметно меньше. Вывод: вполне вероятно, что конденсаторы «народного» типа чуть лучше, чем К73-16. И это несмотря на то, что конденсатор К73-16 военный (5-й приемки). Но может это случайность — разница ведь небольшая…

     5. Исследование спектрограммы тока фторопластового конденсатора ФТ-1

    Измеренные значения таковы: Кг = 0,0023% , К’г = 0,0098%. Хороший конденсатор. У фторопласта есть ряд преимуществ (например, повышенная пропускаемая реактивная мощность на высокой частоте), но они максимально раскрываются в других местах, например при сравнительно больших токах в фильтрах акустических систем. Вывод: ФТ-1 приемлемый для звука тип конденсаторов.

    6. Исследование спектрограммы тока плёночного конденсатора К78-2 (полипропилен)

    Измеренные значения таковы: Кг = 0,0022% , К’г = 0,0064%. Получено пониженное значение нормированного коэффициента гармоник. По обычному Кг полипропилен несколько проигрывает конденсатору К73-16, но, сравнив спектры, можно понять, что использовать для оценки линейности именно нормированный коэффициент К’г – более корректно. Недостатком можно считать наличие 5-й гармоники, а более высоких нет. Вывод: очень линейный конденсатор, рекомендуется применять его в звуке.

    7. Исследование спектрограммы тока плёночного конденсатора К78-19 (полипропилен) 

    Измеренные значения таковы: Кг = 0,0015% , К’г = 0,0049%. Та же картина, только немного лучше. Вывод: исследован самый линейный конденсатор в обзоре, в звуке использовать рекомендуется.

    8. Исследование спектрограммы тока плёночного конденсатора EPCOS (полипропилен)

    Измеренные значения таковы: Кг = 0,0017% , К’г = 0,0053%. Примечательно, что совдеп оказался даже лучше. Однако это установлено на пределе точности и на одной частоте. Откуда вылезла 11-я гармоника напряжения, и почему нет, соответствующей ей 11-й гармоники тока не ясно. Измерено несколько раз, в разных условиях — результат тот же. Вывод: не напрасно за EPCOS берут столько денег. Но хорошо бы внимательнее приглядеться в отечественному типу конденсаторов К78-19. Похоже, что он не уступает буржуйскому, а значительно дешевле.

    9. Исследование спектрограммы тока плёночного конденсатора Азиат.

    Измеренные значения таковы: Кг = 0,0025% , К’г = 0,024%. В принципе неплохой, если бы не непонятно откуда взявшиеся «отдельно стоящие» 12-я, 14-я и 17-я гармоники. Хоть и маленькие, а есть. Их тут же уловил чуткий к таким безобразиям К’г, который сразу вырос из-за них в 10 раз. Вывод: конденсатор можно использовать для питания и для неответственных цепей. Например, в той же мультимедийной акустике (в усилителе).

    10. Исследование спектрограммы тока импортного конденсатора типа CL21, позиционируемого как аналога для К73-17.

    Выигрыш импортного аналога по сравнению с конденсаторами К73-17 в меньших габаритах. Напряжения от 100 вольт и выше.

    Измеренные значения таковы: Кг = 0,0027% , К’г = 0,012%. Линейность похуже, чем у К73-16 и К73-17. Скорее всего, это расплата за меньшие габариты. Но в принципе неплохо. Вывод: конденсаторы CL21 можно использовать в звуке, но совдеп К73-17 лучше. Зато в цепях питания эти конденсаторы получаются выгоднее — при напряжениях выше 50 вольт К73-17 на 63 вольта уже использовать не стоит. А эти запросто пойдут и по габаритам будут меньше, значит на то же самое место можно поставить конденсатор большеё емкости.

    Ниже показан простейший рейтинг конденсаторов по местам. Учитывая, что использовано два оценочных коэффициента, таблица результатов тоже двойная. 

    Любопытно, что в правой половине все первые места заняли полипропиленовые конденсаторы, которые и по субъективным оценкам всегда ставят на первое место. Значит ли это, что нормированный коэффициент гармоник К’г ближе к субъективным ощущениям? Выводы делайте самостоятельно.

    Ниже рассмотрены результаты экспериментального исследования «аудиофильских» конденсаторов. Это довольно непростое дело — ведь некоторые считают, что самые лучшие конденсаторы это «Телефункен», добываемые из приемников, выпущеных в Германии в период с 1934 по 1944 года (т.е. при Гитлере бесноватом). Некоторые считают, что конденсаторы нужно мотать самому из серебряной фольги и «правильного» диэлектрика 13-го числа в новолуние, повернувшись лицом на юг. К сожалению, ни первых, ни вторых конденсаторов в распоряжении экспериментатора не оказалось. Поэтому имеем всего трёх претендентов:

    Металлобумажные конденсаторы К42У-2 и их устаревший (зато хорошо «прогретый» за 30 лет) вариант МБМ. Считается, что бумага — очень хорошо «звучащий» диэлектрик, т.к. она изготовлена из живых существ и «откликается» на красивую музыку. Как откликается на музыку соседская собака — многие хорошо знают, а вот как откликается бумага – понять затруднительно. Тем не менее, считается, что бумажные конденсаторы для усилителей — это кошерно.

    Полистирольные конденсаторы К71-7. Полистирол — очень удачный диэлектрик с хорошими свойствами. Большой плюс этих конденсаторов — низкий разброс емкости. Частенько он составляет всего лишь 0,5%. У металлобумажных соседей разброс емкости может достигать 10%, что намного хуже. Такие конденсаторы хорошо применять в генераторах и точных (сложных) фильтрах. Недостаток — большие габариты. Зато и качество конденсаторов — на высоте (результаты измерений это еще раз подтверждают).

     При измерениях такого рода (практически на пределе точности измерительной системы) встает вопрос повторяемости результатов. Не секрет, что по истечении двух месяцев что-то в (домашних) условиях измерений могло произойти. И действительно изменилось. Повторение некоторых из прошлых опытов дало немного другие значения. Но отличие не велико, в третьей значащей цифре, так что новые результаты легко сравнимы с предыдущими. Поэтому если результаты для «аудиофильских» конденсаторов получились хуже — то это так и есть, измерения тут не при чём. В доказательство привожу результат сравнения конденсатора типа К73-16, исследованного в прошлом тесте и К42У-2 — нового участника. Эти измерения выполнены практически одновременно (с интервалом в 5 минут на перепайку конденсаторов и собственно измерение) и в абсолютно одинаковых условиях. На картинке видно разницу:

    Тот же самый график, только рафинированный, показан ниже.

    Можно предположить, что по линейности бумага похуже, чем лавсан.

    1. Исследование спектрограммы тока металлобумажного конденсатора типа К42У-2

    Измеренные значения таковы: Кг = 0.0023% , К’г = 0.0078%. Не очень плохо, но и не очень хорошо. Может где-то очень глубоко у конденсаторов типа К42У-2 есть своя изюминка, но по приборам её не видно. Вывод: разочарование «аудиофила» — ничего особенного и интересного не установлено.

    2. Исследование спектрограммы тока металлобумажного конденсатора типа МБМ

    Измеренные значения таковы: Кг = 0.0014% , К’г = 0.0067%. Несмотря на то, что спектр гармоник несколько шире, их амплитуда меньше, поэтому престарелый конденсатор оценен получше нового. Напоминаю, что исследовано по одному конденсатору каждого типа. А значит, экспериментатор не застрахован от неудачных экземпляров. Может это получилось потому, что за 30 лет «прогрева» токи полей Теслы через конденсатор были только в «правильном» направлении? Вывод: повторное разочарование «аудиофилов» конденсатор ничуть не лучше обыкновенного.

    3. Исследование спектрограммы тока полистирольного конденсатора типа К71-7

    Измеренные значения таковы: Кг = 0.0016% , К’г = 0.0061%. Совсем неплохо, и даже очень хорошо. Коэффициент гармоник Кг сформирован преимущественно третьей гармоникой. Спектр гармоник узкий, хвоста нету, что свидетельствует о хорошей линейности. Вывод: получено подтверждение очень хорошего качества при предельной точности номинала.

    Рейтинг (обобщение). Виду явного преимущества полистирольного конденсатора среди «аудиофильских», сразу показана общая таблица результатов, включающая результаты предыдущего исследования.

    Выводы по представленным сведениям по-прежнему предстоит делать читателям, информация к размышлению здесь безусловно есть.

    А теперь продолжение тематики, но уже про керамические конденсаторы, самые «противные» из всех. Про них заранее ничего неизвестно — ведь конденсаторы одного и того же типа могут быть изготовлены из разной керамики с совершенно различными свойствами. Существует «закон рычага мироздания»: выигрывая в одном, обычно проигрываешь в чём-то другом. В керамических конденсаторах выигрывая в размерах, проигрывают в термостабильности и линейности, т.к. в качестве диэлектрика используют сегнетокерамику. Причем по техническим условиям нормируется только ТКЕ (температурный коэффициент ёмкости), а вот линейность похоже никого не интересует. Распространено мнение, что термостабильные конденсаторы линейны, а вот нетермостабильные, — не очень. Судя по показаниям приборов это мнение очень легко может оказаться на помойке.

    Есть промежуточные результаты, которые показывают, что и термостабильные керамические конденсаторы могут быть весьма и весьма нелинейными. Исследованию подлежит горсть керамических конденсаторов. Очень интересна попытка найти связь между линейностью конденсатора и остальными его свойствами. К сожалению, тип конденсаторов продолжает оставаться неизвестным (за исключением К10-17а), поэтому ниже показан их групповой портрет (рядом с каждым — порядковый номер, а конденсаторы одинаковой емкости разных типов имеют двойную нумерацию). Емкости от 750 пФ до 1 мкФ.

    Результаты измерений вместе с картинками сведены в общую таблицу. Нужно помнить, что на фото в таблице масштаб не соблюден. Реальные размеры показаны на общем семейном фото.

    Значения ТКЕ измерены не для всех конденсаторов, но и этих чисел достаточно для предварительных выводов. Знак «минус» означает, что с ростом температуры емкость уменьшается.

    Выводы по керамике

    1. Действительно, чем больше емкость конденсатора, заключенная в меньшие габариты, тем хуже линейность. Ниже на картинке показаны зависимости уровня искажений от емкости для конденсаторов К10-17а, имеющих корпуса практически одинаковых размеров:

    2. Конденсаторы небольшой емкости (менее 5 нФ) имеют хорошую линейность. Причем их искажения (в пределах погрешности измерений) от емкости не зависят. Может быть там использован другой диэлектрик?

    3. Конденсаторы в больших корпусах более линейны. Сравните 2-3 и 2-5 (именно они показаны в разломанном виде на фото вверху). Объем корпуса, а главное — объем «кристалла» в несколько раз больше, и искажения различаются более чем на порядок.

    4. Конденсаторы разных типов имеют очень разные характеристики при одной и той же емкости. Ну это и так понятно, непонятно как нормировать процесс производства и прогнозировать получаемый результат. Зачем вообще выпускают их настолько разными?

    5. Весьма любопытно, что же происходит с характеристиками линейности в SMD конденсаторах, которые еще меньше по размерам?

    6. Распространённое мнение «чем лучше ТКЕ, тем лучше линейность» в общем случае подтверждается, но не вполне однозначно. Где-то так, а где-то и наоборот. По-видимому, многое зависит от свойств диэлектрика, причем если ТКЕ нормируется производителями и ТУ, то линейность — нет. Но чтобы хорошенько разобраться в вопросе, нужно провести много экспериментов с конденсаторами разных групп ТКЕ, а это пока не представляется возможным.

    7. Качество звучания усилителя с разделительными керамическими конденсаторами большой емкости будет испорчено.

    Что же делать? По возможности меньше пользоваться керамическими конденсаторами в тракте сигнала, да и в цепях питания. Плёночные конденсаторы объективно лучше. Если же пользоваться керамикой, то не гнаться за миниатюрностью. С другой стороны, не нужно впадать в крайности и использовать здоровенные высоковольтные конденсаторы, должна быть обоснованная разумность. Огромные конденсаторы могут быть сделаны из специальной керамики, которая может оказаться еще хуже «обыкновенной». Конденсаторы малой емкости (< 2000 пФ) ведут себя пристойно. Но за все их типы ручаться не следует. В целом всё не так плохо, как может показаться  на первый взгляд. Даже с плохими конденсаторами можно иметь дело, приняв меры, чтобы не испортить ими звук.

               Статья неизвестного автора, в моей трансляции, корректуре и редактуре.

               Евгений Бортник, Красноярск, Россия, февраль 2016

    paseka24.ru

    Оценка влияния переходных конденсаторов на звучание усилителей

    В настоящее время на рынке радиоэлементов предлагается большое количество разных типов конденсаторов, как отечественных, так и зарубежных, применяемых в качестве разделительных в ламповых усилителях (1-3).

    С целью определения, какие типы конденсаторов предпочтительны к использованию в любительских конструкциях, были проведены электрические измерения характеристик конденсаторов, попавших мне под руку, и субъективная оценка их влияния на звук. Наибольшее внимание уделялось отечественным изделиям, потому что наша промышленность производила (с грустью, в прошедшем…) конкурентоспособные, а часто — и уникальные изделия, во-вторых, отечественные радиоэлементы более доступны любителям. Оговорюсь, что эта статья не претендует на полноту обзора всех имеющихся типов конденсаторов, а призвана лишь помочь любителям хорошего звука в применении того или иного типа. Рекомендую также ознакомиться со статьей (3).
    Избавлю уважаемого читателя о теоретических выкладок, диаграмм и прочего, все это подробно изложено в (1, 3). Буду подробно рассматривать лишь емкость конденсатора Cx и потери энергии переменного сигнала, выражаемые тангенсом угла потерь Dx. Отмечу, что фактор Dx зависит от материала диэлектрика, и во многом — от конструкции конденсатора и технологии производства. Причем параметры Cx и Dx зависят как от частоты, так и от амплитуды приложенного к конденсатору сигнала. Эти параметры измерялись цифровым измерителем иммитанса Е7-14, Позволяющего производить измерения на частотах 100 Гц, 1 кГц и 10 кГц при величине переменного сигнала 2 В rms (для частоты 10 кГц проводились измерения также сигналом с уровнем 40 мв) (4). Результаты измерений сведены в табл.

    Субъективная оценка влияния конденсаторов на звук проводилась в два этапа. Первоначально использовался метод исключения, когда оцениваемый конденсатор Cx (рис.), включенный на входе усилителя, шунтировался контактами реле.

    После этого использовался метод замещения или попарного сравнения:
    1. в самодельном двухтактном усилителе на EL34 конденсаторы подключались между драйверным и выходным каскадами;
    2. в однотактном усилителе на 300В по схеме H. Reichert*а между тремя каскадами.

    Схема установки показана на рис., в качестве эталонного конденсатора Cэт использовались конденсаторы MIT Multi Cap RTX. Прослушивание проводилось на комплекте аппаратуры стоимостью около 4000 USD следующим образом. Трое моих друзей, далеких от технических подробностей, но любящих и ценящих музыку (отдельное им спасибо за то время, что они потратили!), отдельно записывали свои впечатления от звучания, причем в момент прослушивания они не знали, подключен ли Multi Cap за 16 USD, или К78-2 за 3 одеревеневших RusRubl. Обобщенные результаты субъективных экспертиз я привожу в табл.

    Тип конденсатора

    Субъективная оценка влияния на звук

    Возможная область применения

    СГМ

    В качестве шунтирующего для разделительных конденсаторов улучшает передачу «воздуха», может излишне подчеркнуть высокочастотные составляющие.

    Корректоры RIAA.
    Шунтирование конденсаторов других типов.

    К40у-9,
    Audio Note

    Красивый мягкий музыкальный звук, но может проявится завуфлированность общей картины (мутноватость).

    Разделительные конденсаторы.

    К71

    Лёгкое ограничение басов, слегка окрашенный ВЧ диапазон.

    К71-7, ПОВ — корректоры RIAA.
    К71-4 — разделительные, фильтры акустических систем.

    К75, К76

    Окрашивание звучания, потеря микродинамики.

    Шунтирование блоков питания.

    К72п-6, MultiCap

    Нейтральный звук, прекрасная передача микродинамики.

    Разделительные, шунтирующие конденсаторы.

    ФТ3

    По передаче нюансов звучания и расположение инструментов в пространстве — наилучшие.

    Разделительные, шунтирующие конденсаторы.

    К77

    Лёгкое упрощение звуковой картинки, сглаживание шероховатости звучания.

    Шунтирование катодных резисторов, фильтры акустических систем.

    К78,
    WIMA MKP

    Смазывание баса, пропадает послезвучание инструментов, сильное упрощение звуковой картинки.

    Шунтирование блоков питания.

    Solen

    Потеря микродинамики звучания инструментов.

    Блоки питания, фильтры акустических систем.

    MultiCap
    PPFX-S

    Лучшие среди пропиленовых, но по передаче воздуха уступают RTX.

    Разделительные, шунтирующие конденсаторы.

    Что же можно сказать по результатам измерений и прослушивания? С моей точки зрения, наибольший интерес в качестве разделительных представляют бумагомасленные фольговые К40у-9 и фторопластовые ФТ, К72п-6 конденсаторы, которые ни в чем не уступают своим именитым аналогам. Примечательно, что у конденсаторов К40у-9 и ФТ3 тангенс угла потерь снижается с уменьшением уровня сигнала и достигает у ФТ3 Dx=0,0005, что, по-видимому, благоприятно сказывается на звуке. Конденсаторы MIT Multi Cap оправдали свою популярность, а вот изделия французской фирмы Solen я бы не рекомендовал использовать в слабосигнальных цепях, тогда как их применение в сильноточных цепях — в разделительных фильтрах акустических систем и в блоках питания дает прекрасные результаты. Заслуживают внимания и поликарбонатные конденсаторы К77, имеющие достаточно большую емкость при небольших габаритах, а также и полистирольные К71. Комбинированные К75 и лакопленочные К76, несмотря на тенденцию снижения Dx при уменьшении амплитуды сигнала лучше использовать в блоках питания, тем более, что для этого они и разрабатывались. В конце табл. 1 приведены результаты измерения электролитических конденсаторов (начиная с южнокорейских SHOEI), выводы делайте сами. Несмотря на хорошие показатели оксидно-полупроводниковых конденсаторов К53-28, их применение для шунтирования катодных резисторов приводит к появлению резкости, «механистичности» в звуке. Если есть возможность, применяйте в блоках питания усилителя конденсаторы КБГ-МН, К75-24 и т. п. (если только потом сможете такой усилитель поднять…)

    Какие выводы я хочу сделать? Итак:

    1. Измерение параметров не дает полной информации, будет «звучать» данный конденсатор или нет; хотя стабильность характеристик в широком диапазоне и снижение потерь при уменьшении сигнала является обнадеживающим фактором.
    2. Чем слабее сигнал, тем большее влияние на него может оказать диэлектрик разделительного конденсатора. Влияние конденсаторов в фильтрах акустических систем и на выходе драйверных каскадов менее ощутимо, чем во входных. В последних это влияние особенно заметно при больших значениях сеточного сопротивления утечки, что оправдывает применение схем с гальванической связью, то есть без разделительного конденсатора.
    3. Верно, конденсаторы оказывают влияние на звук, но не стоит это влияние переоценивать, так как оно несоизмеримо слабее, чем влияние выходных и прочих трансформаторов, схемотехники (в частности, выбор режимов ламп, тип ламп и экземпляров ламп). Как показывает опыт, изменение режима работы лампы входного каскада кардинально меняет звук всего усилителя, тогда как замена разделительных конденсаторов в посредственном усилителе не изменит практически ничего, пусть даже и стоимость такого «чуда» возрастет вдвое.
    4. Ламповый усилитель, при внешней простоте схемы, является устройством, где все узлы, элементы, конструкция комплексно взаимодействуют как между собою, так и с внешними устройствами: источником сигнала, акустическими системами (а через них и с помещением прослушивания), электрической сетью. Причем чувствительность к типу применяемых радиоэлементов разных узлов усилителя так же может изменяться с учетом изложенных факторов*. Поэтому определять, какой тип конденсаторов (резисторов, проводников) предпочтителен в данной конкретной конструкции, необходимо уже после того, как отработана схемотехника, конструкция усилителя. При этом не отменяются личные пристрастия разработчика и то, с какой другой аппаратурой и для прослушивания каких музыкальных жанров усилитель будет использоваться и, что немаловажно, какова планируемая себестоимость Вашего создания (или возможности Вашего кошелька).
    5. Не без гордости отмечу, что отечественные конденсаторы (наряду с радиолампами, резисторами) обеспечивают прекрасное качество звука при их грамотном применении.
    Хочу пожелать самодельщикам успехов в их таком прекрасном хобби! Побольше экспериментируйте, пробуйте различные радиоэлементы, лампы, схемы (не отрицая огульно при этом классические), и это поможет вам по-настоящему почувствовать музыку! Смею надеяться, что вышеизложенный материал окажется Вам полезен.

    (Нажми на фотографию, в увеличеном виде увидишь наши знаменитые конденсаторы: ФТ3, К40У9, К71-5, К75-10, ОСК42У-2, СГМ-4Г.

    Список литературы:
    1. Справочник по электрическим конденсаторам / Под ред. И. И. Четвертакова, В. Ф. Смирнова. М., 1983.
    2. The Parts Connection, (Каталог радиодеталей, 1997 г.)
    3. Фрунджян Артур. Маленькие секреты конденсаторов / Класс А. — 1996. — спецвыпуск — с. 12-15.
    4. Е7-14. Измеритель иммитанса. Техническое описание и инструкция по эксплуатации.

    Аппаратура, используемая при прослушивании:
    Проигрыватель CD Exposure CD Player, усилители MARANTZ PM 16, Arion Nereus 300B (редкая недоделка, даром что от П. Квортрупа!)., колонки переделанные Cerwin Vega DX9, шнуры все TARA Labs Reference, диски Focal, Pope Music.

    Автор: А. Дмитриев, г. Омск, ф. «Каденция» (Журнал «Вестник АРА»)

    audiogo.ru

    alexxlab

    Отправить ответ

    avatar
      Подписаться  
    Уведомление о