Содержание

Выпрямительные диоды: устройство, конструктивные особенности, характеристики

Основное предназначение выпрямительных диодов – преобразование напряжения. Но это не единственная сфера применения данных полупроводниковых элементов. Их устанавливают в цепи коммутации и управления, используют в каскадных генераторах и т.д. Начинающим радиолюбителям будет интересно узнать, как устроены эти полупроводниковые элементы, а также их принцип действия. Начнем с общих характеристик.

Устройство и конструктивные особенности

Основной элемент конструкции – полупроводник. Это пластина кристалла кремния или германия, у которого имеются две области р и n проводимости. Из-за этой особенности конструкции она получила название плоскостной.

При изготовлении полупроводника обработка кристалла производится следующим образом: для получения поверхности р-типа ее обрабатывают расплавленным фосфором, а р-типа – бором, индием или алюминием. В процессе термообработки происходит диффузия этих материалов и кристалла. В результате образуется область с р-n переходом между двумя поверхностями с различной электропроводимостью. Полученный таким образом полупроводник устанавливается в корпус. Это обеспечивает защиту кристалла от посторонних факторов воздействия и способствует теплоотводу.

Конструкция (1), внешний вид (2) и графическое отображение выпрямительного диода(3)

Обозначения:

  • А – вывод катода.
  • В – кристалладержатель (приварен к корпусу).
  • С – кристалл n-типа.
  • D – кристалл р-типа.
  • E – провод ведущий к выводу анода.
  • F – изолятор.
  • G – корпус.
  • H – вывод анода.

Как уже упоминалось, в качестве основы р-n перехода используются кристаллы кремния или германия. Первые применяются значительно чаще, это связано с тем, что у германиевых элементов величина обратных токов значительно выше, что существенно ограничивает допустимое обратное напряжение (оно не превышает 400 В). В то время как у кремниевых полупроводников эта характеристика может доходить до 1500 В.

Помимо этого у германиевых элементов значительно уже диапазон рабочей температуры, он варьируется в пределах от -60°С до 85°С. При превышении верхнего температурного порога резко увеличивается обратный ток, что отрицательно отражается на эффективности устройства. У кремниевых полупроводников верхний порог порядка 125°С-150°С.

Классификация по мощности

Мощность элементов определяется максимально допустимым прямым током. В соответствии этой характеристики принята следующая классификация:

  • Слаботочные выпрямительные диоды, они используются в цепях с током не более 0,3 А. Корпус таких устройств, как правило, выполнен из пластмассы. Их отличительные особенности – малый вес и небольшие габариты. Выпрямительные диоды малой мощности
  • Устройства, рассчитанные на среднюю мощность, могут работать с током в диапазоне 0,3-10 А. Такие элементы, в большинстве своем, изготавливаются корпусе из металла и снабжены жесткими выводами. На одном один из них, а именно на катоде, имеется резьба, позволяющая надежно зафиксировать диод на радиаторе, используемого для отвода тепла.
    Выпрямительный диод средней мощности
  • Силовые полупроводниковые элементы, они рассчитаны на прямой ток свыше 10 А. Производятся такие устройства в металлокерамических или металлостеклянных корпусах штыревого (А на рис. 4) или таблеточного типа (В). Рис. 4. Выпрямительные диоды высокой мощности

Перечень основных характеристик

Ниже приведена таблица, с описанием основных параметров выпрямительных диодов. Эти характеристики можно получить из даташита (технического описания элемента). Как правило, большинство радиолюбителей к этой информации обращаются в тех случаях, когда указанный в схеме элемент недоступен, что требует найти ему подходящий аналог.

Таблица основных характеристик выпрямительных диодов

Заметим, что в большинстве случаев, если требуется найти аналог тому или иному диоду, первых пяти параметров из таблицы будет вполне достаточно. При этом желательно учесть диапазон рабочей температуры элемента и частоту.

Принцип работы

Проще всего объяснить принцип действия выпрямительных диодов на примере. Для этого смоделируем схему простого однополупериодного выпрямителя (см. 1 на рис. 6), в котором питание поступает от источника переменного тока с напряжением UIN (график 2) и идет через VD на нагрузку R.

Рис. 6. Принцип работы однодиодного выпрямителя

Во время положительного полупериода, диод находится в открытом положении и пропускает через себя ток на нагрузку. Когда приходит очередь отрицательного полупериода, устройство запирается, и питание на нагрузку не поступает. То есть происходит как бы отсечение отрицательной полуволны (на самом деле это не совсем верно, поскольку при данном процессе всегда имеется обратный ток, его величина определяется характеристикой I

обр).

В результате, как видно из графика (3), на выходе мы получаем импульсы, состоящие из положительных полупериодов, то есть, постоянный ток. В этом и заключается принцип работы выпрямительных полупроводниковых элементов.

Заметим, что импульсное напряжение, на выходе такого выпрямителя подходить только для питания малошумных нагрузок, примером может служить зарядное устройство для кислотного аккумулятора фонарика. На практике такую схему используют разве что китайские производители, с целью максимального удешевления своей продукции. Собственно, простота конструкции является единственным ее полюсом.

К числу недостатков однодиодного выпрямителя можно отнести:

  • Низкий уровень КПД, поскольку отсекаются отрицательные полупериоды, эффективность устройства не превышает 50%.
  • Напряжение на выходе примерно вдвое меньше, чем на входе.
  • Высокий уровень шума, что проявляется в виде характерного гула с частотой питающей сети. Его причина – несимметричное размагничивание понижающего трансформатора (собственно именно поэтому для таких схем лучше использовать гасящий конденсатор, что также имеет свои отрицательные стороны).

Заметим, что эти недостатки можно несколько уменьшить, для этого достаточно сделать простой фильтр на базе высокоемкостного электролита (1 на рис. 7).

Рис. 7. Даже простой фильтр позволяет существенно снизить пульсации

Принцип работы такого фильтра довольно простой. Электролит заряжается во время положительного полупериода и разряжается, когда наступает черед отрицательного. Емкость при этом должна быть достаточной для поддержания напряжения на нагрузке. В этом случае импульсы несколько сгладятся, примерно так, как продемонстрировано на графике (2).

Приведенное решение несколько улучшит ситуацию, но ненамного, если запитать от такого однополупериодного выпрямителя, например, активные колонки компьютера, в них будет слышаться характерный фон. Для устранения проблемы потребуются более радикальное решение, а именно диодный мост. Рассмотрим принцип работы этой схемы.

Устройство и принцип работы диодного моста

Существенно отличие такой схемы (от однополупериодной) заключается в том, что напряжение на нагрузку подается в каждый полупериод. Схема включения полупроводниковых выпрямительных элементов продемонстрирована ниже.

Принцип работы диодного моста

Как видно из приведенного рисунка в схеме задействовано четыре полупроводниковых выпрямительных элемента, которые соединены таким образом, что при каждом полупериоде работают только двое из них. Распишем подробно, как происходит процесс:

  • На схему приходит переменное напряжение Uin (2 на рис. 8). Во время положительного полупериода образуется следующая цепь: VD4 – R – VD2. Соответственно, VD1 и VD3 находятся в запертом положении.
  • Когда наступает очередность отрицательного полупериода, за счет того, что меняется полярность, образуется цепь: VD1 – R – VD3. В это время VD4 и VD2 заперты.
  • На следующий период цикл повторяется.

Как видно по результату (график 3), в процессе задействовано оба полупериода и как бы не менялось напряжение на входе, через нагрузку оно идет в одном направлении. Такой принцип работы выпрямителя называется двухполупериодным. Его преимущества очевидны, перечислим их:

  • Поскольку задействованы в работе оба полупериода, существенно увеличивается КПД (практически вдвое).
  • Пульсация на выходе мостовой схемы увеличивает частоту также вдвое (по сравнению с однополупериодным решением).
  • Как видно из графика (3), между импульсами уменьшается уровень провалов, соответственно сгладить их фильтру будет значительно проще.
  • Величина напряжения на выходе выпрямителя приблизительно такая же, как и на входе.

Помехи от мостовой схемы незначительны, и становятся еще меньше при использовании фильтрующей электролитической емкости. Благодаря этому такое решение можно использовать в блоках питания, практически, для любых радиолюбительских конструкций, в том числе и тех, где используется чувствительная электроника.

Заметим, совсем не обязательно использовать четыре выпрямительных полупроводниковых элемента, достаточно взять готовую сборку в пластиковом корпусе.

Диодный мост в виде сборки

Такой корпус имеет четыре вывода, два на вход и столько же на выход. Ножки, к которым подключается переменное напряжение, помечаются знаком «~» или буквами «AC». На выходе положительная ножка помечается символом «+», соответственно, отрицательная как «-».

На принципиальной схеме такую сборку принято обозначать в виде ромба, с расположенным внутри графическим отображением диода.

На вопрос что лучше использовать сборку или отдельные диоды нельзя ответить однозначно. По функциональности между ними нет никакой разницы. Но сборка более компактна. С другой стороны, при ее выходе из строя поможет только полная замена. Если же в этаком случае используются отдельные элементы, достаточно заменить вышедший из строя выпрямительный диод.

www.asutpp.ru

Просто про диоды — DRIVE2

Итак, что следует знать:
1) Диоды питаются током, а не напряжением.
2) У диода есть напряжение открытия.
Что это значит:
Что если у диода напряжения открытия 3,5 вольта, то последовательно соединенные 4 диода от 12 вольт не загорятся. А вот 3 загорятся. Диоду плевать на напряжение, главное оно должно быть выше напряжения открытия. А вот на ток не плевать. Если ток будет выше номинального — диод сгорит.
Диоды в лентах: В блоке диоды и токоограничивающий резистор соединены последовательно. Если его заменить перемычкой и питать блок со стабилизатора тока — диоды будут очень благодарны и проживут долго. Простейший стабилизатор:

Обращаем внимание, что напряжение не указано. Оно нам не важно. Главное, чтоб оно было выше напряжения открытия диодов.
Ну и в конце: Диоды параллельно не соединяем, т.к. параметры у них немного разные и какой-то диод сгорит быстрее. Далее ток на диодах увеличится и сгорят все. На 12 вольт эффективно ставить последовательными линиями из 3-х диодов со своим стабилизатором на каждую.

Дополнения:
Если у нас одинаковые диоды соединены последовательно, то ток в цепи рассчитывается по току ОДНОГО диода. А вот напряжение должно быть больше суммы напряжения диодов цепи.
Например: Есть 3 диода. Напяжение 3,5 вольта, ток 0,02 А. На питание их нужно подавать ток 0,02 А, напряжение более 10,5В.

Для любителей резисторов: Можно использовать стабилизатор напряжения, например DSN2596, а вот после него ток можно ограничивать резисторами.

И ещё существуют повышающие DC-DC преобразователи. Ими можно поднять напряжение.

Самые любимые диоды 5050. Резистор Лучше брать 200 Ом. Не менее 180 Ом.

Схемы подключения:

Буду дополнять по мере задавания вопросов…

Нравится 42 Поделиться: Подписаться на автора

www.drive2.ru

SMD Диоды на ток 1А 2А 3А 5 Ампер до 10А 1000В

Мы надеемся, что вся информация, представленная в каталоге, будет полезна и производителям промэлектроники, и сервисным центрам, и радиолюбителям.

Информация по размерам контактных площадок электронных компонентов, применяемых для разработки, сборки и монтажа печатных плат, находится в разделе Печатные платы.

Выпрямительные диоды на 1000В

Упаковка: В блистр-ленте на катушке диаметром 330 мм по 3000 выпрямительных диодов в SMC. В блистр-ленте на катушке диаметром 180 мм по 3000 выпрямительных диодов в SOD123FL.

Диоды Шоттки на ток от 1 А

Маркировка диода Шоттки Макс. обратное напряжение Макс. ток Имп. прямой ток Макс. прямое напряжение Максимальный обратный ток Тип корпуса диода Характеристики диодаСкладЗаказ
SM5819 40В 25A 0,6В 1,0мА при 25°С и 10мА при 100°С MELF
SS14 40В 30А 0,5В 0,5мА SMA
SS16 60В 30А 0,5В 0,5мА SMA
S100 100В 30А 0,79В 0,5мА SMA
MS120 200В 30А 0,9В 0,002мА SMA
SR24 40В 50A 0,5В 0,5 мАпри 25°С и 20мА при 100°С SMA
SR26 60В 50A 0,5В 0,5 мАпри 25°С и 20мА при 100°С SMA
SX34 (SK34А) 40В 80А 0,5В 0,2мА при 25°С и 20мА при 100°С SMA
SX36 60В 80А 0,5В 0,2мА при 25°С и 20мА при 100°С SMA
SK34 40В 100А 0,5В 0,5 мА при 25°С и 20мА при 100°С SMC
MB310 (SK39 PanJit) 100В 100А 0,9В 0,05мА при 25°С и 20мА при 100°С SMC
MB510 (SK59 PanJit) 100В 100А 0,8В 0,05мА при 25°С и 10мА при 100°С SMC
SVC10120VB 120В 10А 200А 0,7В 0,010мА TO-277B
Купить
Упаковка: В блистр-ленте на катушке диаметром 330 мм по 5000 диодов Шоттки в TO-277B и MELF, по 500 в SMC на катушке диаметром 180 мм, по 1800 в SMA на катушке диаметром 180 мм.

Импульсные диоды

Упаковка: В блистр-ленте на катушке диаметром 330 мм по 7500 импульсных диодов в SMA и по 3000 (на катушке диаметром 180 мм по 500) в SMC. В блистр-ленте на катушке диаметром 180 мм по 3000 импульсных диодов в SOD123FL.

Быстрые диоды Шоттки

Упаковка: В блистр-ленте на катушке диаметром 180 мм по 3000 диодов Шоттки в SOD123FL.

Диоды на ток от 1 Ампера представленные в разделе, изготовлены в пластиковых корпусах SMA (SOD123) и SMC средней рассеиваемой мощности, для слаботочных и сигнальных цепей широко используются маломощные диоды и диодные сборки в корпусах SOD323 в SOT323. В аналогичных корпусах поставляются стабилитроны. Близкие размеры имеют прозрачные корпуса светодиодов 0603 и 1206, многоцветных LED светодиодов двух и трех цветов. Сборки высоковольтных выпрямительных диодов применяются при изготовление диодных мостов в том числе и на диодах Шоттки. В пластиковых корпусах средней мощности выпускаются защитные диоды – полупроводниковые супрессоры.

Электронный каталог Корзина

Корзина пуста

www.smd.ru

Какие диоды нужны для диодного моста? Как подобрать диоды для выпрямления.

 

 

 

Тема: как выбрать диод для получения постоянного тока из переменного.

 

Порой, когда дело приходится иметь с блоками питания (их ремонтом, сборкой своими руками) сталкиваешься с его выпрямительной частью, которая из переменного напряжения делает постоянное. Эта часть есть не что иное как диодный выпрямительный мост. Для технарей электротехников известно, что это такое и какова функция этого элемента электрических схем. Для непосвященных поясню — большинство электротехники содержат в своих схемах блок питания, который понижает сетевое напряжение 220 вольт в меньшее, что используется устройствами (3, 5, 9, 12, 24 вольта, это наиболее распространенные величины пониженных напряжений). В сети используется переменный ток, а практически все электронные схемы работают на постоянном. Так вот, для преобразования переменного напряжения в постоянное и используется диодный мост.

 

Выпрямительные диодные мосты бывают готовыми сборками в едином корпусе, а бывают и самодельными, которые спаиваются из четырех одинаковых диодов. А какие диоды нужны для самодельного диодного моста и как правильно подобрать их для выпрямителя? Все достаточно просто. Основными параметрами для выбора диодов на мост являются напряжение (обратное) и сила тока (которую они могут через себя пропускать без перегрева).

 

Напомню, что диоды при прямом подключении (плюс диода к плюсу прилагаемого напряжения, а минус диода к минусу прилагаемого напряжения) к питанию пропускают через себя электрический ток. В этом режиме (открытом) на них оседает небольшое напряжение в пределах около 0,6 вольт. Как и любые другие проводники они имеют свое внутреннее сопротивление (что и обуславливает это небольшое падение напряжения на них в открытом состоянии). Чем оно больше, тем меньшую силу тока диод способен через себя пропустить. Если же на диод приложить постоянное обратное напряжение (на плюс диода подать минус источника, и на минус диода подать плюс источника), то диод будет работать в режиме запирания. Он не будет через себя пропускать постоянный ток (будет закрыт).

 

 

Так вот, есть максимальная величина обратного напряжения, которую диод может выдержать не входя в режим электрического и теплового пробоя. Именно это обратное напряжение и нужно учитывать при выборе диодов на выпрямительный мост. Если на диодный мост будет подаваться напряжение 220 вольт переменного тока, значит диоды моста должны быть рассчитаны на большее напряжение (с запасом не менее 25%). А лучше вовсе брать с достаточно большим запасом. Это убережет полупроводники от попадания на них случайных скачков напряжения, идущие от сети. Сейчас на обычные, небольшие блоки питания ставят диоды серии 1n4007, у которых обратное напряжение равно 1000 вольтам, а долговременный ток они могут выдерживать до 1 ампера (при температуре 75 градусов).

 

Второй, и пожалуй главной характеристикой выпрямительного диода является сила тока, которую он может пропускать через себя длительное время (без перегрева). Изначально вы должны знать, на какой максимальный ток рассчитан ваш блок питания. И только после этого уже нужно подбирать выпрямительные диоды на мост. К примеру, вы решили сделать себе самодельный регулируемый блок питания с выходным напряжением до 15 вольт и максимальным током в 6 ампер. Следовательно, под такой источник питания нужно брать диоды, рассчитанные на силу тока порядка 10 ампер (плюс определенный запас по току). Ток в 6 ампер как бы относительно немалый. Он будет нагревать диоды выпрямительного моста. Значит под эти диоды, мост еще нужно предусмотреть охлаждающий радиатор.

 

Напомню, что большинство полупроводниковых компонентов сделаны из кремния, а этот материал имеет максимальную рабочую температуру 150—170 °C. Выход за эти пределы разрушаю полупроводник, в нашем случае диоды диодного моста. Лучше держать температуру диодов в пределах до 75 °C. Поставьте на мост небольшой радиатор и посмотрите не выходит ли температура при максимальной нагрузки блока питания за допустимые пределы.

 

Диодных мостов и диодов (под них) существует достаточно большое количество. При выборе сначала в поисковике найдите справочную таблицу диодов и диодных мостов, где указаны основные технические характеристики выпрямителей. Выберите наиболее подходящий компонент с учетом номинального обратного напряжения и силы тока. Если вы поставите на диодный мост диоды с большими номинальными токами и напряжениями, ничего страшного, это будет даже лучше, как бы излишний запас. Но подбирать меньшие или впритык лучше не стоит.

 

P.S. Кроме основных характеристик (тока и напряжения) диодов, которые будут ставится на диодный мост, еще нужно обращать внимание на частоту, на которой они могут нормально работать. Частота сети в 50 герц является достаточно малой и под нее подойдут практически все диоды. Выше приведенный диод 1n4007 имеет рабочую частоту в 1 мГц. Обращать внимание на частоту актуально для электрических схем, рассчитанных на действительно высокие частоты.

 

electrohobby.ru

Диоды 1N4000 и 1N5400 серии. Характеристики

Диоды 1N400x (или 1N4000) — тип выпрямительных диодов для общего применения на 1А, широко используется в электронике из-за универсальности и низкой цены. В эту серию входят модели 1N4001, 1N4002, 1N4003, 1N4004, 1N4005, 1N4006 и 1N4007 . Единственное различие между ними — это максимальное обратное напряжение, которое они выдерживают. В остальном они похожи и взаимозаменяемы друг с другом.

Серия 1N4000 на 1 ампера

Диоды серии 1N4000 допускают максимальный ток в 1А и обычно используются в качестве выпрямителей в блоках питания и адаптерах переменного тока. Они также могут использоваться в качестве супрессоров в индуктивных нагрузках, например реле или двигателях, но поскольку они относительно медленные, они не совсем подходят для этой цели.

Серия 1N5400 на 3 ампера

Диоды серии 1N5400 аналогичны 1N4000, но выдерживают ток до 3 ампер. Эти диоды больше по размеру, чем 1N4000 (для лучшей теплоотдачи). На следующем рисунке мы видим разницу в размерах между обеими моделями.

Скорость переключения диодов 1N4000 и 1N5400

Как упоминалось выше, скорость переключения всех этих диодов относительно медленная из-за внутренней емкости полупроводника (между 10пф и 15пф), поэтому они не подходят для работы с высокими частотами.

Лучшее их применение — использование в качестве сетевых выпрямителей ( 50Гц/60Гц ) или для работы с частотами не более 1000 Гц.

А в качестве супрессоров в индуктивных нагрузках лучше, чтобы диод был как можно быстрее, для подавления ЭДС самоиндукции, которая создает помехи и может повредить силовые транзисторы, которые управляют индуктивной нагрузкой. В этих случаях лучше использовать быстрые диоды типа Шоттки.

В любом случае, с небольшими моторами или реле, диоды, такие как 1N4006 или 1N4007, работают правильно и являются практичным и экономичным решением.

Характеристика

Когда диод из этой серии находится в состоянии проводимости, то на его выводах будет напряжение (напряжение падения), которое может варьироваться от 0,7 до 1,2 В, в зависимости от величины проходящего через него тока.

Если через диод будет протекать значительный ток, то корпус диода нагреется из-за рассеивания им мощности, которая может доходить до 1 Вт (P = V * I ).

Как бы то ни было, эти диоды достаточно надежны и могут работать при высоких температурах.

Эквиваленты диодов 1N4000 и 1N5400 для поверхностного монтажа (SMD)

Версия для поверхностного монтажа для диодов серии 1N4000 маркируется символом S1 плюс буква, указывающая максимальное рабочее напряжение. Его корпус — DO-214AC. Например, диод 1N4001 маркируется как S1A , а 1N4002 обозначается как S1B и так далее.

Также имеется версия диодов 1N5400 для поверхностного монтажа на 3A . В этом случае диоды 1N5400 маркируются как S3 плюс буква, указывающая напряжение: S3A, S3B, S3D и т. д. Его корпус — DO-214AB.

В следующей таблице показаны все диоды (обычные и SMD) с соответствующими максимальными рабочими напряжениями.

источник

fornk.ru

Диод как выбрать


Какие диоды нужны для диодного моста? Как правильно подобрать диоды для выпрямления.

Тема: как выбрать диод для получения постоянного тока из переменного.

Порой, когда дело приходится иметь с блоками питания (их ремонтом, сборкой своими руками) сталкиваешься с его выпрямительной частью, которая из переменного напряжения делает постоянное. Эта часть есть не что иное как диодный выпрямительный мост. Для технарей электротехников известно, что это такое и какова функция этого элемента электрических схем. Для непосвященных поясню — большинство электротехники содержат в своих схемах блок питания, который понижает сетевое напряжение 220 вольт в меньшее, что используется устройствами (3, 5, 9, 12, 24 вольта, это наиболее распространенные величины пониженных напряжений). В сети используется переменный ток, а практически все электронные схемы работают на постоянном. Так вот, для преобразования переменного напряжения в постоянное и используется диодный мост.

Выпрямительные диодные мосты бывают готовыми сборками в едином корпусе, а бывают и самодельными, которые спаиваются из четырех одинаковых диодов. А какие диоды нужны для самодельного диодного моста и как правильно подобрать их для выпрямителя? Все достаточно просто. Основными параметрами для выбора диодов на мост являются напряжение (обратное) и сила тока (которую они могут через себя пропускать без перегрева).

Напомню, что диоды при прямом подключении (плюс диода к плюсу прилагаемого напряжения, а минус диода к минусу прилагаемого напряжения) к питанию пропускают через себя электрический ток. В этом режиме (открытом) на них оседает небольшое напряжение в пределах около 0,6 вольт. Как и любые другие проводники они имеют свое внутреннее сопротивление (что и обуславливает это небольшое падение напряжения на них в открытом состоянии). Чем оно больше, тем меньшую силу тока диод способен через себя пропустить. Если же на диод приложить постоянное обратное напряжение (на плюс диода подать минус источника, и на минус диода подать плюс источника), то диод будет работать в режиме запирания. Он не будет через себя пропускать постоянный ток (будет закрыт).

Так вот, есть максимальная величина обратного напряжения, которую диод может выдержать не входя в режим электрического и теплового пробоя. Именно это обратное напряжение и нужно учитывать при выборе диодов на выпрямительный мост. Если на диодный мост будет подаваться напряжение 220 вольт переменного тока, значит диоды моста должны быть рассчитаны на большее напряжение (с запасом не менее 25%). А лучше вовсе брать с достаточно большим запасом. Это убережет полупроводники от попадания на них случайных скачков напряжения, идущие от сети. Сейчас на обычные, небольшие блоки питания ставят диоды серии 1n4007, у которых обратное напряжение равно 1000 вольтам, а долговременный ток они могут выдерживать до 1 ампера (при температуре 75 градусов).

Второй, и пожалуй главной характеристикой выпрямительного диода является сила тока, которую он может пропускать через себя длительное время (без перегрева). Изначально вы должны знать, на какой максимальный ток рассчитан ваш блок питания. И только после этого уже нужно подбирать выпрямительные диоды на мост. К примеру, вы решили сделать себе самодельный регулируемый блок питания с выходным напряжением до 15 вольт и максимальным током в 6 ампер. Следовательно, под такой источник питания нужно брать диоды, рассчитанные на силу тока порядка 10 ампер (плюс определенный запас по току). Ток в 6 ампер как бы относительно немалый. Он будет нагревать диоды выпрямительного моста. Значит под эти диоды, мост еще нужно предусмотреть охлаждающий радиатор.

Напомню, что большинство полупроводниковых компонентов сделаны из кремния, а этот материал имеет максимальную рабочую температуру 150—170 °C. Выход за эти пределы разрушаю полупроводник, в нашем случае диоды диодного моста. Лучше держать температуру диодов в пределах до 75 °C. Поставьте на мост небольшой радиатор и посмотрите не выходит ли температура при максимальной нагрузки блока питания за допустимые пределы.

Диодных мостов и диодов (под них) существует достаточно большое количество. При выборе сначала в поисковике найдите справочную таблицу диодов и диодных мостов, где указаны основные технические характеристики выпрямителей. Выберите наиболее подходящий компонент с учетом номинального обратного напряжения и силы тока. Если вы поставите на диодный мост диоды с большими номинальными токами и напряжениями, ничего страшного, это будет даже лучше, как бы излишний запас. Но подбирать меньшие или впритык лучше не стоит.

P.S. Кроме основных характеристик (тока и напряжения) диодов, которые будут ставится на диодный мост, еще нужно обращать внимание на частоту, на которой они могут нормально работать. Частота сети в 50 герц является достаточно малой и под нее подойдут практически все диоды. Выше приведенный диод 1n4007 имеет рабочую частоту в 1 мГц. Обращать внимание на частоту актуально для электрических схем, рассчитанных на действительно высокие частоты.

Понравилось?Поставь Плюс »

electrohobby.ru

Как подобрать диод и чем они отличаются?

  • Полупроводниковые. Приборы с 1 электрическим выпрямляющим переходом и 2 выводами, в нем применяется определенное свойство перехода. В свою очередь, полупроводники разделяют на выпрямительные устройства большой, средней и малой мощности, импульсные и полупроводниковые стабилитроны.
  • Выпрямительные с небольшой мощностью. Сюда определяют приборы с прямым током до 300 мА. Выпрямительный допустимый ток определяет среднее значение при показателе 50 Гц. Показатель обратного максимального напряжения – до 1200 В.
  • Выпрямительные со средней мощностью. Со средним значением тока 300 мА – 10 мА. Больший ток тут возможен при помощи увеличения размеров кристаллов на переходе. В большей части кремниевые диоды. Небольшой обратный ток.
  • Силовые. Работают в диапазоне от 10 А  и больше. Показатель обратного напряжения составляет значение 6000 В и меньше. Изготовлены они, как правило, из кремниевого материала.

Полупроводники выполняют ряд функций, которые зависят от используемого типа  прибора.

Диодные мосты. Это соединенные между собой 4,6,12 диодов. Их основная функция – это выпрямительная, лучше всего применять для автомобильного генератора, потому что использование такого типа мостов  способно уменьшить габариты используемого прибора, а заодно и увеличить его надежность. При последовательном одностороннем соединении повышается минимальный показатель напряжения, нужного для того, чтобы открыть весь мост.

Диодный детектор. Это – часть конструкции большинства бытовых приборов, как, например, приемников и телевизоров. Обеспечена защита от неправильной полярности, перегрузки, ключа от пробоя  электрической силой, которая может появиться в процессе самоиндукции. Для того, чтобы защитить схемы от перегрузки, используют цепочку, которая состоит из нескольких диодов. Они подключены к шинам питания в обратном порядке. Вход с защитой подключают, как правило, на середину указанной цепочки.

Во время обычной работы схем, диоды  находятся в закрытом положении, но если они уловили, что потенциал на входе превысил допустимые показатели, то происходит активизирование защитного элемента. По причине этого допустимые потенциальные показатели ограничиваются по формату питающего допустимого напряжения вместе с прямыми падениями показателя напряжения на защитных приборах.

Диодные переключатели применяют для того, чтобы произвести коммутирование сигналов на высоких частотах. Управляют всем этим с помощью электрического постоянного тока, подачи сигнала управления, разделения высокой частоты, это происходит из-за индуктивности и конденсаторов.

Диодная искрозащита. Шунто-диодные барьеры в ней применяются для того, чтобы гарантировать безопасность, ограничив напряжение на нужной заданной электроцепи.

Также вместе с этим используют токоограничивающие резисторы, которые нужны для того, чтобы ограничить показатель электротока, проходящего по сети, и увеличить параметры защиты.

Применение диодов по типам

Зависимо от сферы применения, полупроводниковые приборы подразделяют на такие типы: выпрямительные, универсальные, сверхвысокочастотные, импульсные. Также – вирикапы, стабилитроны, обращенные тоннельные, фотодиоды, генераторы шумов, светоизлучающие, магнитодиоды.  Купить диоды вы сможете на нашем сайте, для этого вам всего лишь нужно ознакомиться с предложенным каталогом, выбрать и заказать именно то, что нужно. Наши менеджеры любезно предоставят вам детальную консультацию для того, чтобы ваша покупка была максимально удачной и полезной.

Полупроводники применяют в электронике, для выпрямления тока, для подключения к источникам с переменными токами, еще – в качестве защиты при неверном подключении, для приема сигнала.

Вывод

Таким образом, анализируя все вышесказанное, можно сделать следующие выводы. Выбирая диод, нужно ориентироваться на выдвигаемые к нему требования.  Независимо от того, для чего именно подбирается устройство, при выборе нужно обратить внимание на основные характеристики, на допустимое максимальное значение прямых токов с обратным напряжением. Если импульсный показатель прямых токов средней величины значительно превышен, то нужно именно его и учитывать, особенно – для полупроводникового диода.

Если нужно выпрямить токи на большой частоте, то нужно ориентироваться на быстрое действие прибора, у полупроводникового точечного устройства собственная емкость ниже, чем у плоскостного. По причине этого они выпрямляют ток на высокой частоте. К тому же – маломощные.  Аналогичны с небольшой разницей диоды Шоттки.

Если не имеет значения кпд и не нужен обратный ток, лучше выбрать электровакуумное устройство, выпрямляющее при небольшом напряжении.

220-energy-380.com

Основные параметры диодов

Основные параметры диодов – это прямой ток диода (Iпр) и максимальное обратное напряжение диода (Uобр). Именно их надо знать, если стоит задача разработать новый выпрямитель для источника питания.

Прямой ток диода

Прямой ток диода можно легко вычислить, если известен общий ток, который будет потреблять нагрузка нового блока питания. Затем, для обеспечения надёжности, необходимо несколько увеличить это значение и получится ток, на который надо подобрать диод для выпрямителя. К примеру, блок питания должен выдерживать ток в 800 мА. Поэтому мы выбираем диод, у которого прямой ток диода равен 1А.

Обратное напряжение диода

Максимальное обратное напряжение диода – это параметр, который зависит не только от значения переменного напряжения на входе, но и от типа выпрямителя. Для объяснения этого утверждения, рассмотрим следующие рисунки. На них показаны все основные схемы выпрямителей.

Рис. 1

Как мы говорили ранее, напряжение на выходе выпрямителя (на конденсаторе) равно действующему напряжению вторичной обмотки трансформатора, умноженному на √2. В однополупериодном выпрямителе (рис. 1), когда напряжение на аноде диода имеет положительный потенциал относительно земли, конденсатор фильтра заряжается до напряжения, превышающего действующее напряжение на входе выпрямителя в 1.4 раза. Во время следующего полупериода напряжение на аноде диода отрицательно относительно земли и достигает амплитудное значения, а на катоде – положительно относительно земли и имеет такое же значение. В этот полупериод к диоду приложено обратное напряжение, которое получается благодаря последовательному соединению обмотки трансформатора и заряженного конденсатора фильтра. Т.е. обратное напряжение диода должно быть не меньше двойного амплитудного напряжения вторички трансформатора или в 2.8 раза выше его действующего значения. При расчёте таких выпрямителей надо выбирать диоды с максимальным обратным напряжением в 3 раза превышающим действующее значение переменного напряжения.

Рис. 2

На рисунке 2 изображён двухполупериодный выпрямитель с выводом средней точки. В нём также, как и в предыдущем, диоды надо подбирать с обратным напряжением в 3 раза превышающем действующее значение входного.

Рис. 3

По другому обстоит дело в случае мостового двухполупериодного выпрямителя. Как можно видеть на рис. 3, в каждый из полупериодов удвоенное напряжение прикладывается к двум непроводящим, последовательно соединённым диодам.

katod-anod.ru

kakvybratvsjo.ru

5 Вольт 7.2 Ампера и 36 Ватт или небольшой рассказ о том, как выбрать правильный блок питания.

Несколько раз в комментариях, а потом и в личке меня просили об обзорах блоков питания на определенное напряжение. Я ответил, что постараюсь взять такие БП на обзор и протестировать.
Сегодня обзор блока питания на 5 Вольт.
Но просто сделать обзор было бы совсем скучно, поэтому в этот раз я попробую рассказать какие компоненты в блоке питания за что отвечают и на что надо обращать внимание при выборе блока питания.

В обзоре будет много букв и не очень много фотографий. И хоть я буду стараться писать на понятном языке, но могу сорваться и начать выражаться неприличными словами типа — синфазный, насыщение, утечка и т.п. Если вдруг что то непонятно, спрашивайте, объясню 🙂

Изначально я планировал заказать два блока питания, на разную мощность, 18 и 36 Ватт, но потом решил что 18 совсем неинтересно и заказал только 36 Ватт версию, ее и будем обозревать.

Начну обзор я как всегда с упаковки, так как по упаковке и встречают товар.
Пришел блок питания в коробочке из коричневого картона, на которой нанесена маркировка указывающая что перед нами блок питания на напряжение 5 Вольт и ток 7.2 Ампера.

5 Вольт 7.2 Ампера и 36 Ватт или небольшой рассказ о том, как выбрать правильный блок питания.
Судя по маркировке, блоки питания в таком корпусе изготавливаются на разную мощность и разные напряжения. мне уже попадался как то 12 Вольт блок питания в таком корпусе.
Технические характеристики блока питания, заявленные на наклейке.
Входное напряжение 100-240 Вольт
Частота питающей сети — 50/60Гц.
Выходное напряжение — 5 Вольт
Выходной ток (максимальный) — 7.2 Ампера
Максимальная мощность — 36 Ватт. Написано что общая, что подразумевали под этим в данном случае, не совсем понятно.5 Вольт 7.2 Ампера и 36 Ватт или небольшой рассказ о том, как выбрать правильный блок питания.
Блок питания относительно небольшой, высота примерно соответствует высоте спичечного коробка и составляет 37мм.
Масса блока питания всего 133 грамма (вообще, чем больше этот параметр, тем лучше, хотя и косвенно).
Длина 85мм, ширина 58мм.5 Вольт 7.2 Ампера и 36 Ватт или небольшой рассказ о том, как выбрать правильный блок питания.
Вход, выход и заземление выведено на один клеммник.
Клеммник имеет крышку, полностью она не открывается, не хватает буквально немного, рядом расположен подстроечный резистор для корректировки выходного напряжения и светодиод, показывающий что блок питания включен.5 Вольт 7.2 Ампера и 36 Ватт или небольшой рассказ о том, как выбрать правильный блок питания.
Так как снаружи блока питания ничего интересного нет, разве что блестящий перфорированный кожух, защищающий от удара током и помех, то посмотрим что внутри и как это все работает.
Отвинчиваем пару винтов и добираемся до внутренностей.
Внешне претензий нет. Первым делом о культуре производства говорит монтаж. Если детали стоят ровно, отсутствуют пустые места на плате, а габаритные компоненты закреплены при помощи клея (ну или герметика), то чаще всего это признаки скорее хорошего БП, чем плохого.
Здесь установлено все аккуратно, но пустые места все таки присутствуют, хоть их и немного.5 Вольт 7.2 Ампера и 36 Ватт или небольшой рассказ о том, как выбрать правильный блок питания.
Внешний осмотр закончен, теперь можно перейти к более детальному описанию.
Для начала конструкция, в этом блоке питания применено пассивное охлаждение компонентов.
Часть тепла передается на алюминиевый корпус, выполняющий роль радиатора. Это довольно таки классический принцип охлаждения подобных блоков питания.
Кстати повысить эффективность охлаждения можно закрепив блок питания к чему то теплорассеивающему. Не рекомендуется крепить такой блок питания на теплоизолирующую поверхность, либо делать это только при условии уменьшения нагрузки.5 Вольт 7.2 Ампера и 36 Ватт или небольшой рассказ о том, как выбрать правильный блок питания.
Тепло на корпус передается от двух деталей, это высоковольтный транзистор и выходной диод, о них я расскажу позже. Между компонентами и корпусом был нанесена теплопроводящая паста, а сами компоненты прижаты стальной пластинкой.5 Вольт 7.2 Ампера и 36 Ватт или небольшой рассказ о том, как выбрать правильный блок питания.
А теперь рассмотрим отдельные части типичного блока питания и я попробую объяснить какие из них за что отвечают.
1. Клеммник, ну тут все понятно, отвечает за подсоединение входных и выходных проводов. при больших токах используют несколько одноименных клемм, например две плюсовые клеммы и две минусовые. Здесь на этом несколько сэкономили, так как выходной ток до 7.2 Ампера, а клемм всего по одной на полюс. Не скажу что это критично, но лучше когда нагрузку можно распределить.
2. Входной фильтр.
3. Диодный мост, выпрямляет сетевое напряжение, иногда устанавливается на радиатор (если выполнен в виде отдельного компонента), но в маломощных это не надо.
4. Конденсатор входного выпрямителя
5. Высоковольтный транзистор
6. Трансформатор
7. Выходной выпрямительный диод.
8. Выходной фильтр питания
9. Узел стабилизации и регулировки выходного напряжения.5 Вольт 7.2 Ампера и 36 Ватт или небольшой рассказ о том, как выбрать правильный блок питания.
Дальше я покажу и опишу вышеуказанные узлы более расширенно.
Входной фильтр питания. На самом деле больше необходим для фильтрации помех, которые проникают от блока питания в сеть. Если у вас фонит радиоприемник при включении импульсного блока питания, то сначала проверьте, а есть ли в нем такой фильтр.
В полном варианте включает в себя дроссель с двумя обмотками, два конденсатора х типа (на фото желтый), два конденсатора Y типа (обычно небольшие голубого цвета). Также в фильтр помех входит конденсатор, соединяющий первичную и вторичную стороны БП, и соединяющий минус выходных клемм с корпусом, но они больше влияют на гашение помех по выходу.
Из-за этих Y1 конденсаторов незаземленный блок питания обычно «кусается».
С дросселем и Х конденсаторами все просто, чем больше индуктивность и емкость, тем лучше, иногда даже применяют двухступенчатые фильтры (два дросселя).
В некоторых случаях фильтр упрощают, оставляя только дроссель, один конденсатор Х типа и один или два Y1 типа (между первичной и вторичной стороной БП и между минусом БП и корпусом). Это также вполне нормальное решение, но иногда вместо дросселя ставят «специально обученные перемычки», либо убирают фильтр совсем, вот так делать нельзя, помехи гарантированы.
В данном случае мы видим «эконом вариант», но вполне работоспособный, его можно было бы не дорабатывать, но производитель вместо правильных Y1 конденсаторов установил обычные высоковольтные (2.2нФ 2КВ). Это небезопасно, так как при пробое таких конденсаторов выход БП окажется соединенным со входом и может ударить током. пробить его может от всплеска напряжения вызванного например мощным разрядом молнии недалеко от линии электропередач.
Вывод, фильтр вполне жизнеспособен, но для безопасной эксплуатации лучше заменить конденсаторы голубого цвета обозначенные на плате как CY на правильные Y1 конденсаторы, либо заземлить корпус БП.
К сожалению подобным грешат наверное 90% недорогих БП.
Также, перед фильтром питания, в импульсных блоках питания устанавливается специальный терморезистор, который ограничивает бросок тока при включении. Здесь его нет, вернее его роль частично выполняет дроссель, это не очень хорошо, но в данном случае терпимо, при большой мощности БП (и соответственно конденсаторах большой емкости) он обязателен, а в особо тяжелых случаях даже стоит специальная схема, которая после включения его замыкает.
Работает он так: пока терморезистор холодный, его сопротивление велико и он ограничивает ток, после включения он нагревается и его сопротивление падает, и он не вносит больших потерь. Но если выключить блок питания, а затем включить не дождавшись остывания терморезистора, то бросок тока почти не будет ограничен.5 Вольт 7.2 Ампера и 36 Ватт или небольшой рассказ о том, как выбрать правильный блок питания.
После входного фильтра установлен диодный мост, который выпрямляет переменный ток, дальше уже постоянный ток поступает на электролитический конденсатор.
Диодный мост бывает также разным, либо из отдельных диодов, либо в виде отдельного компонента, иногда его даже устанавливают на радиатор. В данном случае применено 4 отдельных диода. Диоды самые классические, 1N4007, вполне достаточно для такого блока питания. В дешевых блоках питания применяют вообще один диод, это очень плохо, так как входной конденсатор работает неэффективно.
Входной электролитический конденсатор. Ну тут все просто, чем больше емкость (в разумных пределах), тем лучше.
Для блока питания рассчитанного только под 230 (± 10%) необходимо конденсатор емкостью равной мощности БП. Т.е. если блок питания на 90 Ватт, то конденсатор ставят 100мкФ.
Для блоков питания рассчитанных под расширенный диапазон 100-240 Вольт емкость этого конденсатора должна быть больше в 2-3 раза.
В данном случае применен конденсатор емкостью 47мкФ на напряжение 450 Вольт (это очень хорошо, обычно применяют конденсаторы на 400 Вольт). Для входного напряжения 230 Вольт его емкость более чем достаточна (при мощности блока питания в 36 Ватт), но для работы при напряжении 100-150 Вольт он мал.
Емкость конденсатора влияет на следующие характеристики.
1. Диапазон входного напряжения при котором блок питания нормально работает.
2. Срок жизни конденсатора, из-за больших пульсаций конденсатор меньшей емкости состарится раньше, чем больше емкость, тем дольше будет жить.
3. Увеличение емкости положительно влияет на КПД блока питания, хоть и слабо.5 Вольт 7.2 Ампера и 36 Ватт или небольшой рассказ о том, как выбрать правильный блок питания.
Высоковольтный транзистор. Ну тут особо сказать нечего.
Разве что тут не проходит правило — чем больше, тем лучше. Параметры транзистора должны быть оптимальны для примененной микросхемы ШИМ контроллера.
Может влиять максимальное напряжение, у этого транзистора оно равняется 600 Вольт, для данной схемы это вполне нормально, я встречал иногда на 800 Вольт, но это очень большая редкость.
Влияет еще вариант корпуса. Бывают в полностью пластмассовом корпусе, а бывают с металлической частью, тогда транзистор крепится к радиатору/корпусу через изолирующую прокладку. Вариант с полностью изолированным корпусом мне лично нравится больше.5 Вольт 7.2 Ампера и 36 Ватт или небольшой рассказ о том, как выбрать правильный блок питания.
Силовой трансформатор.
Если сильно упростить, то здесь действует правило — чем больше, тем лучше.
В данном БП применена схемотехника «обратноходового преобразователя», т.е. сначала открывается транзистор, «накачивает» трансформатор (на самом деле не совсем именно трансформатор, но это не важно), потом транзистор закрывается и энергия от трансформатора «перекачивается» в нагрузку через выходной диод.
Почему я написал насчет упрощения, дело в том, что размеры трансформатора зависят не только от мощности, а и от частоты работы блока питания. Чем частота выше, тем меньше можно применить трансформатор, но большинство ширпотребных блоков питания работают в диапазоне 60-130КГц, потому правило все таки действует.
Существуют более высокочастотные контроллеры, но высокая частота требует очень качественных материалов для трансформатора, потому цена такого БП будет гораздо выше.
Я встречал в дешевых АТХ блоках питания мощностью 250-300 Ватт трансформаторы размеров с пол спичечного коробка, но это была не работа на очень высокой частоте, а просто дикая экономия 🙁
Иногда спрашивают, а можно перестроить БП с 5 Вольт на 9, или с 19 на 12?
Чаще всего нельзя, так как трансформатор имеет определенное соотношение витков в первичной и вторичной обмотке, и перестроенный БП будет работать в не оптимальном режиме. или вообще не будет, так как у трансформатора есть еще одна обмотка, от которой питается микросхема ШИМ контроллера и напряжение на этой обмотке также зависит от напряжения на других обмотках.
В данном блоке питания трансформатор вполне соответствует заявленной мощности.5 Вольт 7.2 Ампера и 36 Ватт или небольшой рассказ о том, как выбрать правильный блок питания.
Выходной выпрямительный диод.
От этого диода довольно сильно зависит надежность работы блока питания, одно из правил, диод должен быть рассчитан на ток в 2.5-3 раза больше, чем максимальный выходной ток блока питания. В нашем случае это 7.2х3=21.6
В данном блоке питания применена диодная сборка, состоящая из двух диодов. Согласно документации диод рассчитан на 20 Ампер (2х10) и напряжение 100 Вольт.
По току соответствует необходимым параметрам, а по напряжению значительно превышает требуемые.
Обычно для БП 5 Вольт достаточно чтобы диод был рассчитан на 45-60, для БП 12 Вольт на 100 Вольт, для 24 Вольта надо уже 150 Вольт.
Но на самом деле, слишком хорошо это тоже плохо. Объясню почему.
Диоды Шоттки вещь очень хорошая, имеют маленькое падение, быстрое переключение, что положительно сказывается на КПД блока питания и его нагреве.
Но в отличии от обычных диодов у них более выражена разница в зависимости падения на нем от максимального напряжения, на которое рассчитан диод. Т.е. диод на 45 Вольт запросто имеет падение в 1.5 раза меньше чем диод на 100 Вольт. Т.е в данном БП лучше смотрелся бы диод на 30-40 Ампер и 60 Вольт, КПД был бы выше, а цена практически той же.
Т.е. по факту в этом БП применен хороший диод с большим запасом по напряжению, это надежно, думаю что если и сгорит он, то одним из последних, но он просто не совсем оптимален.5 Вольт 7.2 Ампера и 36 Ватт или небольшой рассказ о том, как выбрать правильный блок питания.
Выходной фильтр и узел стабилизации.
Для начала здесь также существуют свои правила, например суммарная емкость конденсаторов желательна из ра

www.kirich.blog

alexxlab

leave a Comment