Диодный мост из диодов на 20 ампер.

щас нах

ток не складывается

если у тебя трос выдерживает тонну, ты 4 куска свяжешь по цепочке — 4 тонны выдержит чтоли ?

да, причем в каждый полупериод по цепи ток проходит через 2 из них — но тоже последовательно

так что ток не складывается

не так, он может выдержать именно 20 А, не больше. если хотите больше — ставьте в параллель еще диоды

он выдержит столько- на какой ток ОДИН диод.

За полупериод активно 2 диода, причём включённые последовательно, значит ток через них одинаков, то есть максимальный ток 20 А, не выдумывай.

Нет он будет на 40 Ампер. Ток идет через 2 диода. Т. е. пол периода по одним и пол периода по другим. В суме 40 А. Информация 100%. И проверена ни раз лично.

Учебник открой, хоть раз в жизни….

<img src=»//otvet.imgsmail.ru/download/43621213_1112926cd53df21a8c07fce1938886d2_800.gif» alt=»» data-lsrc=»//otvet.imgsmail.ru/download/43621213_1112926cd53df21a8c07fce1938886d2_120x120.gif» data-big=»1″>

Выдержит как и один диод, 20 ампер.

Жесть, что он делает и чем думает…
Мост он делает, Карл, Мост!!!!

Реальные диоды выдерживают максимальный ток в импульсе в несколько раз больше среднего тока, а ток здесь импульсный. Поэтому 40 А.

Мост состоит из двух плеч (пар), которые работают попеременно. То есть, половину времени диод отдыхает. Поэтому ток можно в идеале увеличить вдвое, чем по инструкции.

В реальности надо учесть, что ток идёт не ровно, а горбом. Это нехорошо для диода. И что мощность на внутреннем сопротивлении диода растёт от тока по квадратному закону.

То есть, в реальности, допустимый ток возрастает всего где-то в полтора раза. Если надо точнее — надо смотреть методом тыка, по нагреву)

Нет. 40 Ампер не будет. Есть какая-то велечина, не помню какая. Но не 40 — чуть меньше

touch.otvet.mail.ru

Диоды Шоттки

Название

Описание

15TT100Диод Шотки 100 Вольт, 15 Ампер
16CTT100Сдвоенный диод Шотки 100 Вольт, 16 Ампер   (2 х 8А)
1N5817Ограничительный диод Шоттки, 1 Ампер
1N5818Ограничительный диод Шоттки, 1 Ампер
1N5819Ограничительный диод Шоттки, 1 Ампер
1N5820Ограничительный диод Шоттки, 3 Ампера
1N5821Ограничительный диод Шоттки, 3 Ампера
1N5822Ограничительный диод Шоттки, 3 Ампера
1PS70SB10Ограничительный диод Шоттки
1PS70SB14Сдвоенный ограничительный диод Шоттки
1PS70SB15Сдвоенный ограничительный диод Шоттки
1PS70SB16Сдвоенный ограничительный диод Шоттки
1PS70SB40Диоды Шоттки общего назначения
1PS70SB44Диоды Шоттки общего назначения
1PS70SB45Сдвоенные диоды Шоттки с общим катодом
1PS70SB46Сдвоенные диоды Шоттки с общим анодом
1PS75SB45Сдвоенные диоды Шоттки с общим катодом
1PS76SB10Ограничительный диод Шоттки
1PS76SB21Ограничительный диод Шоттки в корпусе для   поверхностного монтажа
1PS76SB40Диоды Шоттки общего назначения
1PS76SB70Диод Шоттки в корпусе для поверхностного   монтажа
1PS79SB10Ограничительный диод Шоттки
1PS79SB30Ограничительный диод Шоттки
1PS79SB31Ограничительный диод Шоттки
1PS79SB40Диоды Шоттки общего назначения
1PS79SB70Диод Шоттки в корпусе для поверхностного   монтажа
1PS88SB48Счетверенные диоды Шоттки с общим катодом
20TT100Диод Шотки 100 Вольт, 20 Ампер
21TT100Диод Шотки 100 Вольт, 20 Ампер
30CPT100Сдвоенный диод Шотки 100 Вольт, 30 Ампер   (2 х 15А)
30CTT045Сдвоенный диод Шотки 45 Вольт, 30 Ампер   (2 х 15А)
30CTT100Сдвоенный диод Шотки 100 Вольт, 30 Ампер   (2 х 15А)
30PT100Диод Шотки 100 Вольт, 30 Ампер
43CTT100Сдвоенный диод Шотки 100 Вольт, 40 Ампер   (2 х 20А)
60CPT045Сдвоенный диод Шотки 45 Вольт, 60 Ампер   (2 х 30А)
63CPT100Сдвоенный диод Шотки 100 Вольт, 60 Ампер   (2 х 30А)
8TT100Диод Шотки 100 Вольт, 8 Ампер
B0520LWОграничительный диод Шоттки, малое   падение входного напряжения, 410 мВт
B0520LWFОграничительный диод Шоттки, малое   падение входного напряжения
B0530WОграничительный диод Шоттки, малое   падение входного напряжения, 410 мВт
B0530WFОграничительный диод Шоттки, малое   падение входного напряжения
B0530WSОграничительный диод Шоттки, малое   падение входного напряжения, 200 мВт
B0540WОграничительный диод Шоттки, малое   падение входного напряжения, 410 мВт
B0540WFОграничительный диод Шоттки, малое   падение входного напряжения
B120Ограничительный диод Шотки в корпусе для   поверхностного монтажа
B130Ограничительный диод Шотки в корпусе для   поверхностного монтажа
B140Ограничительный диод Шотки в корпусе для   поверхностного монтажа
B150Ограничительный диод Шотки в корпусе для   поверхностного монтажа
B160Ограничительный диод Шотки в корпусе для   поверхностного монтажа
B230LAОграничительный диод Шотки в корпусе для   поверхностного монтажа

radioschema.ru

Диоды на 10 ампер 220 вольт

Д305     (50)     10,0     40     5,0     0,3     10,0     2,5     80
Д332А     400     10,0     —     —     1,0     10,0     3,0     130
Д332Б     400     5,0     —     —     1,5     5,0     3,0     130
Д333     500     10,0     —     —     1,0     10,0     3,0     130
Д333Б     500     5,0     —     —     1,5     5,0     3,0     130
Д334Б     600     5,0     —     —     1,5     5,0     3,0     130
2Д201А     (100)     5,0     15     1,1     1,0     5,0     3,0     130
2Д201Б     (100)     10,0     100     1,1     1,0     10,0     3,0     130
2Д201В     (200)     5,0     15     1,1     1,0     5,0     3,0     130
2Д201Г     (200)     10,0     100     1,1     1,0     10,0     3,0     130
2Д202В     70 (100)     5,0     30     1,2 (5)     1,0     3,0     1,0     130
2Д202Д     120 (200)     5,0     30     1,2 (5)     1,0     3,0     1,0     130
2Д202Ж     210 (300)     5,0     30     1,2 (5)     1,0     3,0     1,0     130
2Д202К     200 (400)     5,0     30     1,2 (5)     1,0     3,0     1,0     130
2Д202М     350 (500)     5,0     30     1,2 (5)     1,0     3,0     1,0     130
2Д202Р     420 (600)     5,0     30     1,2 (5)     1,0     3,0     1,0     130
КД202А     35 (50)     5,0     9,0     1,2 (5)     0,9     5,0     0,8     130
КД202Б     35 (50)     3,5     9,0     1,2 (5)     0,9     3,5     0,8     130
КД202В     70 (100)     5,0     9,0     1,2 (5)     0,9     5,0     0,8     130
КД202Г     70 (100)     3,5     9,0     1,2 (5)     0,9     3,5     0,8     130
КД202Д     140 (200)     5,0     9,0     1,2 (5)     0,9     5,0     0,8     130
КД202Е     140 (200)     3,5     9,0     1,2 (5)     0,9     3,5     0,8     130
КД202Ж     210 (300)     5,0     9,0     1,2 (5)     0,9     5,0     0,8     130
КД202И     210 (300)     3,5     9,0     1,2 (5)     0,9     3,5     0,8     130
КД202К     280 (400)     5,0     9,0     1,2 (5)     0,9     5,0     0,8     130
КД202Л     280 (400)     3,5     9,0     1,2 (5)     0,9     3,5     0,8     130
КД202М     350 (500)     5,0     9,0     1,2 (5)     0,9     5,0     0,8     130
КД202Н     350 (500)     3,5     9,0     1,2 (5)     0,9     3,5     0,8     130
КД202Р     420 (600)     5,0     9,0     1,2 (5)     0,9     5,0     0,8     130
КД202С     480 (600)     3,5     9,0     1,2 (5)     0,9     3,5     0,8     130
2Д203А     420 (600)     10,0     100     1 (10)     1,0     10,0     1,5     140
2Д203Б     560 (800)     10,0     100     1 (10)     1,0     10,0     1,5     140
2Д203В     560 (800)     10,0     100     1 (10)     1,0     10,0     1,5     140
2Д203Г     700 (1000)     10,0     100     1 (10)     1,0     10,0     1,5     140
2Д203Д     700 (1000)     10,0     100     1 (10)     1,0     10,0     1,5     140
КД203А     420 (600)     10,0     30     1 (10)     1,0     10,0     1,5     140
КД203Б     560 (800)     10,0     30     1 (10)     1,0     10,0     1,5     140
КД203В     560 (800)     10,0     30     1 (10)     1,0     10,0     1,5     140
КД203Г     700 (1000)     10,0     30     1 (10)     1,0     10,0     1,5     140
КД203Д     700 (1000)     10,0     30     1 (10)     1,0     10,0     1,5     140
2Д204А     400     0,4     —     1,0     1,4     0,6     0,15     125
2Д204Б     200     0,6     —     5,0     1,4     0,6     0,1     125
2Д204В     50     1,0     2,0     5,0     1,4     0,6     0,05     125

vsevopros.ru

Блок питания на 24 Вольта, 20 Ампер и 480 Ватт, контроль температуры трансформатора

Не так давно я выкладывал обзор блока питания мощностью 360 Ватт. Тогда я написал, что жду посылку с еще парой БП, но мощнее. Вот посылка пришла и у меня дошли руки до первого из них, мощностью 480 Ватт. Пока это самый мощный БП, который я обозревал (не считая лабораторных), кроме того он имеет заметные отличия от предыдущих.
Впрочем все как всегда, осмотр, разборка, тесты.

По большому счету блоки питания друг от друга особо ничем не отличаются, но в этот раз все пошло по другому, отличалось многое, и об этом я и расскажу, выделяя ключевые моменты, думаю что это будет полезно.

Постараюсь сделать обзор коротким, ну или по крайней мере не очень длинным 🙂

Отличия начались еще с упаковки. Для начала в коробке было специальное «окошко», через которое видно наклейку с наименованием БП, удобно.

Во вторую очередь оказалось, что БП запаян в пленку, что также раньше мне не встречалось.

Внешне блок питания практически не отличается от предыдущей модели мощностью 360 Ватт, те же размеры, такая же решетка вентилятора.

В своих обзорах я практически всегда показываю фото клеммника. Начал я так делать после комментария, где мне писали что бывают БП, где крышка не открывается полностью, и вот мне тоже попался такой блок. Позже выяснилось, что это можно исправить, но «из коробки» крышка полностью не открывалась, неудобно.

Маркировка клемм не в виде наклейки, а проштампована на крышке. Также сделана предупреждающая надпись около вентилятора.

Крышка довольно тонкая, в одном месте ее даже продавило.

Как водится, есть и резистор для подстройки выходного напряжения, а также светодиод индикации работы.

Блок питания промаркирован как S-480-24. Выходной ток 20 Ампер. Я наверное никогда не пойму, зачем БП маркируют как LED Power supply, при чем здесь светодиоды если Бп универсальный, видимо так они лучше продаются.

Присутствует предупреждающая наклейка, а также переключатель 110/220 Вольт.

Выпущен БП в конце 2016 года, можно сказать что свежий.

Когда я снял крышку, то на некоторое время даже завис 🙂 Ну наконец то что-то отличное от уже набивших оскомину классических БП на базе TL494. Внутри практически пусто, как говорится -это жжж… неспроста.

Корпус также немного отличается, обычно крышка крепится на шести винтах, в данном случае два винта и пара выступов вверху.

Чтобы было лучше понятно разницу между «классическим» БП и этим, я сделал пару фото в сравнении с предыдущим БП 12 Вольт 360 Ватт.

Первым делом осмотр крепления силовых элементов. И хотя если транзисторы или диоды стоят парами, то 99% что проблем не будет, я все равно продолжаю осматривать крепеж.

Транзисторы и диоды прижаты планками к алюминиевому корпусу. Но теплораспределительных пластинок нет, т.е. силовые элементы просто прижаты к самому корпусу.

Замечаний нет, все ровно и аккуратно, даже накидали теплопроводящей пасты, сначала может показаться что ее уж слишком много, но на самом деле под элементами остался совсем тонкий слой.

Если внимательно посмотреть на второе фото, то можно заметить маркировку на печатной плате, судя по которой плата проектировалась для БП мощностью 360 Ватт.

Охлаждает начинку вентилятор диаметром 60мм. По ощущениям довольно производительный, впрочем об этом говорит и соотношение мощности к его размеру. Шумит не очень сильно, но заметно.

Первым же тестом идет измерение диапазона регулировки выходного напряжения.

1. Исходно БП был настроен на чуть большее чем 24 Вольта напряжение.

2. Минимально можно выставить около 14 Вольт, но работает БП в таком режиме нестабильно, пришлось переключить тестер в режим отображения минимальных и максимальных значений. Судя по всему БП в таком режиме недогружен, ШИМ контроллеру не хватает питания и он делает постоянный рестарт.

3. Стабильно БП начинает работать ближе к напряжению в 20 Вольт.

4. Максимально получилось выставить около 27 Вольт.

5. Выставляем штатные 24 Вольта и замечаем две вещи. Регулировка довольно грубая, непонятно зачем сделали регулировку аж от 14 Вольт, вполне могли урезать диапазон до 20-27, было бы более плавно.

6. Но проблема в другом, по мере прогрева выходное напряжение немного «плывет» вверх, это можно заметить по параметру МАХ и времени рядом.

Раз уж измерял напряжение, то попутно измерил емкость входных и выходных конденсаторов.

Входные имеют суммарную емкость в 313 мкФ, что маловато для мощности 480 Ватт, с выходными картина не лучше, около 7000мкФ, тоже хотелось бы больше. Но как я неоднократно указывал, у брендовых БП емкость выходных конденсаторов примерно такая же при подобных характеристиках БП.

Вот теперь можно спокойно разобрать и посмотреть, какие отличия нам приготовили китайские инженеры.

Первый «сюрприз» ждал меня практически сразу. Еще при разборке я обратил внимание, что мест для винтов крепления платы пять, а самих винтов всего четыре. Но отсутствовал не средний, как обычно, а угловой.

Забегая немного вперед, скажу, винт нашелся когда я случайно стукнул плату уже ближе к концу осмотра, предположительно он был под трансформатором. Непорядок.

На входе блока питания установлен фильтр от помех, поступающих со стороны блока питания в сеть. Фильтр набран в типичной для подобных БП конфигурации.

1. Перед фильтром установлен предохранитель и пара термисторов для ограничения пускового тока. Иногда меня спрашивают, а зачем отмечают в таких БП фазу и ноль. Дело в том, что в БП один предохранитель и стоит он обычно по линии фазы, соответственно при выходе БП из строя электроника не только обесточится, а и не будет под потенциалом фазы.

2. Дальше идет помехоподавляющий конденсатор и двухобмоточный дроссель, намотанный довольно толстым проводом.

3. Все помехоподавляющие конденсаторы, которые влияют на безопасность, применены правильного Y2 типа. В фильтре использован только один простой высоковольтный конденсатор, но его применение не снижает уровень безопасности.

4. Диодный мост набран из четырех диодов 1N5408, что на мой взгляд не очень хорошо при таких мощностях, спасает ситуацию только активное охлаждение. Зато рядом видно место под установку конденсатора. На это место можно установить конденсатор на напряжение 400-450 Вольт и он будет «помогать» уже установленным.

Необычно выглядят четыре фильтрующих конденсатора вместо привычных двух. На корпусе значок известной фирмы, но не обольщайтесь, это не фирменные конденсаторы. Внешне это заметно по кривизне термоусадки вверху корпуса.

Заявленная емкость фильтра 470мкф, включение 2S2P, реальная емкость 313мкФ, я не думаю что реальные фирменные конденсаторы имели бы такой разброс, да и сам габарит говорит за себя.

Что интересно, трансформатор применен примерно того же размера, что и в предыдущем БП 360 Ватт. Но работает обозреваемый БП на частоте в 2 раза больше, чем у предыдущего.

1. В этот раз применены полевые транзисторы, а не привычные по предыдущим обзорам, биполярные. Транзисторы IRFP460, но судя по внешнему виду транзисторы отличаются, что может говорить об их БУшности, потому как на нормальном производстве обычно транзисторы из одной партии, не говоря о внешнем виде.

2. Примерно та же картина и с выходными диодыми сборками. Обе имеют маркировку 43CTQ100, но при этом разные внешне.

3. Выходной дроссель намотан в четыре провода и имеет относительно небольшой размер, особенно в сравнении с предыдущими моделями БП, которые я обозревал.

4. Выходные конденсаторы неизвестного производителя, напряжение 35 Вольт, емкость 2200мкФ.

Выходной помехоподавляющий дроссель привычно отсутствует, да и вообще в мощных БП (по крайней мере китайских) попадается крайне редко.

Рядом с конденсаторами находится мощный резистор, «благодаря» которому при прогреве «уползает» выходное напряжение.

Обычно в обзорах я осматриваю печатную плату и чаще всего пишу — плата чистая, пайка аккурантная, но не в этом случае, здесь все наоборот.

Но кроме всего прочего меня удивила разводка печатной платы. Чаще всего рекомендуется размещать силовые узлы как можно ближе друг к другу. А если сказать точнее, то — связанные силовые узлы.

В данном случае мы видим кучу длинных дорожек идущих от силовых транзисторов к трансформатору, параллельно им идет дорожка питания, а также общий провод. На мой личный взгляд такое решение не очень правильно и чревато большими помехами в радиоэфире. Ситуацию спасает только полностью металлический корпус блока питания, который рекомендуется заземлить.

Выходная часть большей частью представляется из себя полностью залуженные полигоны, что правильно при таких токах.

Но если посмотреть чуть ниже, то мы увидим жменьку радиодеталей, это элементы цепи обратной связи, с другой стороны платы, сразу над ними, расположен нагрузочный резистор (нарисовал на фото), который ощутимо греется. Нагрев влияет на компоненты и напряжение «плывет», не помогают даже точные резисторы. В данном случае это не страшно, так как уход небольшой, но он есть. Перфекционисты могут просто поднять резистор над платой и попутно уменьшить нагрев стоящего рядом электролитического конденсатора.

А вот за резисторы под сетевым фильтром спасибо. Мало того что резисторы стоят как минимум парами, а в цепи питания ШИМ контроллера так вообще 4 штуки. Так еще и присутствуют резисторы до диодного моста и после. Первые разряжают входной помехоподавляющий конденсатор, вторые, конденсаторы фильтра питания.

БП собран на базе популярного ШИМ контроллера UC2845, потому получается, что БП однотактный. Еще одно важное отличие, так как предыдущие были на базе TL494. По сути оба ШИМ контроллера разработаны примерно в одно время, потому на данный момент являются самыми классическими среди применяемых в БП. Данная особенность является плюсом, так как такие БП проще в ремонте.

Не обошлось и без косяков. Вообще китайский БП и косяки, братья навек, меняется только уровень.

В данном случае сразу был обнаружен неприпаянный вывод снаббера одного из выходных диодов, не очень хорошо.

Кроме этого по всей плате видны мелкие шарики припоя, а также следы от пайки в ванне. Данные следы могут либо вообще не повлиять, либо просто выгореть при первом включении и также никак не повлиять, либо вывести БП из строя. Исправляеются недоработки очень просто, но технолог на производстве явно получает свою зарплату зря, если он там вообще есть.

Блок питания с такой схемотехникой я еще не обозревал, потому вдвойне было интересно начертить его схему. Если на фото кажется что деталей в нем совсем мало, то глядя на схему такое ощущение пропадает.

Дальше я разбил схему на условные узлы, цвета могут быть малоконтрастны, извините, выбор небольшой.

1. Красный — силовая высоковольтная (горячая) часть

2. Синий — выходная низковольтная (холодная) часть, узел обратной связи и схема питания вентилятора.

3. Зеленый — ШИМ контроллер и его штатная обвязка.

4. Оранжевый — предположительно узел плавного старта и защиты от КЗ на выходе.

5. Неизвестный мне цвет — диод около трансформатора, узел защиты от насыщения трансформатора.

Номиналы и позиционные обозначения в большинстве соответствуют реальности, но номиналы некоторых SMD конденсаторов указаны ориентировочно, так как я не выпаивал их из платы.

Данный БП построен по однотактной прямоходовой (Forward) схемотехнике, тогда как более распространенные маломощные однотактные БП строятся по однотактной обратноходовой (Flyback).

На блок схеме я выделил цветом узлы прямоходового преобразователя (справа), которых нет в схеме обратноходового (слева). В прямоходовом добавлен диодов, дроссель и одна из обмоток трансформатора включена в обратной полярности (это важно).

Кроме того есть еще одно отличие, в случае прямоходовой схемы у сердечника трансформатора не делают зазор, который обязателен в обратноходовой схеме.

Прямоходовая схемотехника (особенно однотактная) очень похожа на классический понижающий (stepdown) преобразователь.

В обоих схемах входной ключ «накачивает» выходной дроссель, а в паузе через диод отдает энергию в нагрузку. Только в случае прямоходомого БП в роли ключа выступает как сам транзистор, так и трансформатор и один из выходных диодов.

Покажу сходные узлы, они обозначены одним цветом для наглядности. Думаю что теперь понятно, почему выше я писал, что фильтрующего выходного дросселя в этом БП нет, потому как тот что установлен является накопительным. Закорачивать этот дроссель категорически нельзя.

Обычно прямоходовая схема используется при больших мощностях, а обратноходовая при малых. Обусловлено это тем, что у обратноходовой схемы трансформатор имеет зазор и размеры трансформатора начинают становиться существенными, кроме того контролировать выбросы труднее и схема может работать менее стабильно.

Но у прямоходовых мощных схем также хватает сложностей. В данном случае в схему добавлен дополнительный диод и обмотка трансформатора. Эта цепь необходима для защиты трансформатора от насыщения при нештатных ситуациях (например КЗ в нагрузке). В цветном варианте схемы этот узел отмечен «неизвестным цветом».

Цитата, описывающая этот узел, взята отсюда (внимание, возможна навязчивая реклама).

Данная схема имеет несколько существенных недостатков. Во-первых, работа с однополярными токами в обмотках трансформатора требует мер по снижению одностороннего намагничения сердечника. Во-вторых, при размыкании ключа энергия, накопленная в индуктивности намагничения трансформатора, не может «разрядиться» самостоятельно, поскольку все выводы трансформатора «повисают в воздухе». В этом случае возникает индуктивный выброс — повышение напряжения на силовых электродах ключевого транзистора, что может привести к его пробою. В-третьих, короткое замыкание выходных клемм преобразователя обязательно выведет силовую часть из строя, следовательно, требуются тщательные меры по защите от КЗ.

Недостаток, связанный с намагничением сердечника однополярными токами, присущ всем однотактным схемам, и с ним успешно бо-рятся введением немагнитного зазора. Для борьбы с перенапряжениями используется дополнительная обмотка, «разряжающая» индуктивный элемент в фазе холостого хода током г3, как показано на рисунке

Дабы не перегружать читателей ненужной информацией, завязываю с теорией и перехожу к практике, а точнее к тестам.

Тестовый стенд стандартен для моих обзоров и состоит из:

1. Электронная нагрузка

2. Мультиметр

3. Осциллограф

4. Тепловизор

5. Термометр

6. Три нагрузочных резистора сопротивлением 10 Ом и мощностью 50 Ватт каждый, резисторы обдуваются при помощи вентилятора.

7. Ваттметр

8. Ручка карандаш и бумажка.

Уже на холостом ходу присутствуют небольшие пульсации, в данном случае некритичные.

Для теста использовалась комбинация из резисторов и электронной нагрузки.

1. Сначала было подключено два резистора, которые обеспечивали ток нагрузки около 4.8 Ампера, электронная нагрузка добавляла нагрузку до 5 Ампер.

Пульсации на мой взгляд великоваты для 25% нагрузки.

2. Та же пара резисторов с током 4.8 Ампера + 5.2 на электронной, в сумме 10 Ампер.

Пульсации более 100мВ, выходное напряжение немного поднялось, что хоть и является побочным эффектом, но в данном случае полезным.

1. Два резистора 4.8 Ампера + 10.2 на электронной, в сумме 15 Ампер.

Пульсации выросли, причем довольно существенно. На осциллографе выставлено 50мВ на клетку, щуп в положении 1:1, дальше можете посчитать сами.

Выходное напряжение еще немного поднялось.

2. В дополнение к двум нагрузочным резисторам добавил третий, в сумме получилось 7.2 Ампера + электронная 12.8, в сумме 20 Ампер ток нагрузки.

Пульсации еще выросли и стали очень ощутимыми, на установленном пределе измерения еле хватает экрана оциллографа.

Выходное напряжение также немного поднялось, но отмечу один момент. Ввыше я писал, что по мере прогрема напряжение растет, в процессе теста напряжение стояло жестко. Колебания если и были, то в пределах одного последнего знака. Т.е. подняли ток нагрузки, напряжение поднялось и не меняется до следующего шага теста, так что здесь плюс.

Измерение КПД стало уже неотъемлемой частью моих тестов БП, не обошел я вниманием и этот экземпляр, тем более что он имеет другую схемотехнику.

В итоге у меня вышло:

Вход — Выход — КПД.

7.1 — 0 — 0

144 — 120 — 83,3%

277 — 240 — 86,6%

414 — 360 — 86,9%

556 — 480 — 86,3%

На мой взгляд КПД находится на довольно приличном уровне, лучше чем у предыдущих БП, обзоры которых я делал.

Теперь по поводу температуры и ее распределения между элементами.

Больше всего нагревается входной диодный мост и трансформатор, но в обоих случаях температура находится далеко от критичной, потому я вполне могу сказать, что БП мог бы выдать и 550-600 Ватт. Особенно отмечу низкую температуру силовых транзисторов, они не прогревались выше 52 грудсов даже при максимальной мощности.

Тест проходил стандартно, 20 минут прогрев на 25% мощности, потом 20 минут на 50% и т.п. Общее время теста составило около полтора часа так как последний тест я решил немного продлить.

По большому счету не имело значения сколько бы я тестировал этот БП, так как термопрогрев у устройств с активным охлаждением наступает очень быстро и что через 20 минут, что через час, температура будет почти неизменной. У БП с пассивным охлаждением это время гораздо больше, потому я стараюсь тестировать их дольше.

Но не обошлось и без одной не очень приятной мелочи, свойственной блокам питания с активным охлаждением. Дело в том, что нормальная температура компонентам сохраняется в основном благодаря постоянному току воздуха внутри корпуса. Когда я снимал крышку для тестов, то отмечал быстрый рост температуры. К сожалению данная особенность свойственна всем БП имеющим активное охлаждение и при нагрузке выше 50% с остановленным вентилятором обычно заканчивается печально.

Чаще всего такое происходит из-за перегрева силового трансформатора. Я частенько отмечаю важность контроля температуры именно трансформатора, так при нагреве выше определенной температуры феррит теряет свои свойства.

Если объяснить «на пальцах», то происходит следующее:

Представьте себе насос (транзисторы инвертора), схему управления (ШИМ контроллер), баллон (трансформатор) и клапан (выходные диоды).

Насос качает воду (допустим) в баллон, потом пауза, выходной клапан сливает воду, потом цикл повторяется.

Чем больше нужна мощность, тем больше воды мы качаем в баллон. Но тут происходит перегрев, объем нашего баллона уменьшается раз в 5, но схема управления этого не знает и пытается качать как и раньше. Так как баллон стал меньше, то насос начинается работать с большой перегрузкой, а дальше два варианта, либо лопнет баллон, либо сгорит насос. Так как баллон очень крепкий, то выгорает насос, чаще всего унося с собой и схему управления и предохранитель.

Потому важно следить не за транзисторами, температура которых можно достигать и 150 градусов, а за трансформатором, у которого предел 110-120 градусов.

Блок питания не имеет контроля работы вентилятора и термозащиты, потому в случае его остановки (пыль, заклинивание), скорее всего сгорит. Такая ситуация с многими блока питания и потому важно следить за состоянием системы охлаждения.

На фото видно рост температуры трансформатора, где буквально за 20 секунд она поднимается с 92 градусов до 100 при снятой крышке. На самом деле температура изначально была ниже, просто она успела подрасти пока я открыл крышку и делал первое фото.

Зато в процессе теста нагрузочные резисторы грелись от души, температура около 250 градусов даже при обдуве, температура электронной нагрузки была существенно ниже, хотя на ней рассеивалось почти в 2 раза больше. Зато после последжних тестов у моей нагрузки в итоге подгорел один из термовыключателей и она норовила выключиться гораздо раньше чем достигала перегрева, никак не займусь новой версией.

Выводы.

Не буду расписывать преимущества и недостатки, а постараюсь дать выжимку из того, что я увидел.

Блок питания прошел тест под полной нагрузкой, нагрев был в пределах нормы и даже ниже ее, что дает возможность предположить нормальную работы и при заметно больших мощностях.

Но вот качество изготовления сильно хромает, также расстраивает заниженная емкость входных и низкое качество выходных конденсаторов. Данное устройство больше похоже на конструктор для сборки нормального БП, но укомплектованный абы как.

Получается что с одной стороны ругать не хочется, ведь БП работает, и работает нормально, с другой мелочи в виде капелек припоя, выпадающего винтика и т.п. требуют «доработки напильником».

Магазин дал купон для обзора — S480power, с ним цена выходит $22.99. На мой личный взгляд, даже с такими недоработками цена вполне адекватна, если не страшит перспектива проверки и доработки, то вполне нормально. Если хотите вариант купил и пользуйся, то лучше взять Менвелл, но цена будет выше. Купон будет действовать две недели.

На этом все, как обычно жду вопросов, а также комментариев. Ну а меня ждет блок питания мощностью 600 Ватт.

Товар предоставлен для написания обзора магазином. Обзор опубликован в соответствии с п.18 Правил сайта.

mysku.ru

Очередной блок питания, на этот раз 12 Вольт, 20 Ампер и 240 Ватт

Что-то давно я не писал про блоки питания, хотя это одна из моих самых любимых тем. Кроме того я как-то обошел своим вниманием блоки питания на распространенное напряжение в 12 Вольт.
В этот раз я решил убить двух зайцев, поковырять блок питания на 12 Вольт с пассивным охлаждением.
Осмотр, тесты, выводы, как всегда под катом.

Почему мне нравится ковырять блоки питания особо расписывать смысла нет, а вот почему именно 12 Вольт, напишу.

Так уж сложилось, но блоки питания с выходным напряжением в 12 Вольт являются одними из самых популярных наряду с 5 Вольт и 19 Вольт.

5 Вольт используется для питания небольших устройств, но больше популярности добавило то, что такое же напряжение дает порт USB, потому и начали «плодиться» такие БП.

19 Вольт используются в ноутбуках, а также такие БП используются энтузиастами радиолюбителями для разного рода паяльных станций и усилителей, в основном из-за приемлемой мощности и компактности.

Ну а 12 Вольт просто для начала является безопасным напряжением и при этом позволяет передавать довольно большую мощность. Конечно на мой взгляд зачастую его можно (а иногда и нужно) на 24 Вольта, но это напряжение больше используется в промышленных устройствах.

В быту же от 12 Вольт можно питать получившие распространение светодиодные ленты для декоративной подсветки и освещения, от 12 Вольт питаются также системы видеонаблюдения, иногда небольшие компьютеры, а также разные граверы, 3D принтеры и т.п.

Вообще у меня в планах сделать несколько обзоров подобных БП, но с разной мощностью и сегодня ко мне на стол попал блок питания на 240 Ватт с пассивной системой охлаждения.

На данный момент распространенные безвентиляторные БП имеют мощность до 240-300 Ватт, причем вторые встречаются куда реже и я бы скорее сказал, что 240 Ватт это уже почти максимум.

На этом я закончу краткое вступление и перейду к предмету обзора.

БП в привычном металлическом корпусе, думаю многие видели подобные решения в продаже.

Упакован был в обычную белую коробку, на фото она не попала, да и не особо там есть на что смотреть.

Вход и выход выведены на один большой клеммник, сверху присутствует наклейка с указанием назначения контактов, но приклеили со сдвигом, что может сбить с толку неопытного пользователя.

Клеммник имеет защитную крышку, причем открывается она на 90 градусов, что является хоть и небольшим, но плюсом, так как есть варианты, где крышка не открывается полностью.

Справа от клеммника приютился подстроечный резистор и светодиод индикации включения блока питания.

Заявленные параметры — 12 Вольт 20 Ампер, реальный производитель неизвестен, маркировка стандартна для многих недорогих БП — S-240-12

Сбоку находится переключатель входного напряжения 110/200 Вольт, лучше перед первым включением проверить что он находится в правильном положении.

Дата выпуска конец 2016 года, так что БП можно сказать, свежий.

Для начала измеряем что на выходе у БП настроено.

Выставлено 12.3 Вольта, диапазон регулировки 10-14.5 Вольта. после проверки выставил что-то близкое к 12 Вольт.

Внешне осматривать больше нечего, потому снимаем верхнюю крышку и посмотрим что внутри.

А внутри блок питания ничем не отличается от других, подобных недорогих блоков.

Мне он сходу напомнил блок питания на 48 Вольт 240 Ватт, я бы даже сказал что они один в один.

Даже наверное не так, фактически это тот же БП, просто на другое напряжение, потому я в самом начале и написал, что реальный производитель неизвестен.

Классический осмотр начинки.

1. Входной фильтр, присутствует, хотя и не в полном объеме, отсутствует конденсатор после дросселя и варистор. К сожалению это черта подавляющего большинства китайских БП.

2. Помехоподавляющие конденсаторы в опасной цепи — Y1, в менее опасной, обычный высоковольтный, можно сказать что нормально.

3. Входной диодный мост установлен с запасом, 8 Ампер 1000 Вольт, но радиатор отсутствует. В предыдущем варианте диодный мост был на 20 Ампер.

Также рядом видны два термистора, включенные параллельно.

4. Входные конденсаторы Rubicong, закос под Rubicon, если бы еще параметры соответствовали заявленным, но об этом позже.

5. Пара высоковольтных транзисторов прижатых к алюминиевому корпусу, который работает как радиатор.

6. Силовой трансформатор явно промаркирован как 240 Ватт 12 Вольт. На вид довольно неплох, видны следы пропитки лаком.

Китайские производители продолжают штамповать свои блоки питания на классической элементной базе. Я не скажу что это плохо, но более именитые производители уже гораздо реже делают БП на базе TL494.

По своему это имеет свои плюсы, ремонт такого БП довольно прост, комплектующие есть везде, да и документации по ним очень много.

Как и в варианте 48 Вольт, здесь также использован усиленный вариант радиатора, выходная диодная сборка прижата к ребристому радиатору, который уже отводит часть тепла на корпус. Если в 48 Вольт версии это было не особо и нужно, то при токах в 20 Ампер такое решение не лишнее.

1. Выходной дроссель при вполне нормальных габаритах намотан всего в два провода, причем сечение провода сопоставимо с тем, что использовалось в БП 48 Вольт.

2. Выходные конденсаторы имеют заявленную емкость в 2200мкФ, производитель также неизвестен, впрочем я и не ожидал здесь увидеть конденсаторы от Nichicon или хотя бы Samwha.

3,4. А вот момент с прижимом силовых элементов я проверил отдельно, так как в прошлый раз у меня были большие нарекания по поводу крепежа диодной сборки. В данном случае все в принципе нормально. Можно немного попридираться к прижиму транзисторов (слева), но практика показала, что все в порядке.

Вынимаем плату из корпуса и посмотрим на качество пайки и поищем «косяки» производителя.

Высоковольтные транзисторы применены с запасом, можно не беспокоиться. К тому же корпус TO247, в котором они выполнены, улучшает отвод тепла на радиатор.

Выходная диодная сборка MBR30200 представляет собой два высоковольтных диода Шоттки. Я немного скептически отношусь к применению высоковольтных диодов Шоттки, так как у них уже нет преимущества перед обычными в плане падения напряжения, но остается преимущество в большей скорости переключения, т.е. динамические потери меньше.

Общий вид печатной платы снизу.

Пайка на вид вполне нормальная, в этой части БП все нормально, даже чисто.

Силовые дорожки дополнительно покрыты припоем для увеличения сечения, здесь также нареканий особо нет, хотя в некоторым местах на мой взгляд припоя маловато.

Но один неприятный момент я все таки нашел. Один из силовых контактов не очень хорошо пропаян. Можно конечно сказать, что там по три контакта на полюс, но ведь может так попасть, что он как раз окажется нагруженным. Собственно потому я всегда советую при покупке блоков питания проверять как они собраны. Хотя нет, корректнее сказать — при покупке недорогих блоков питания всегда проверять качество сборки.

На плате присутствует не совсем понятная мне маркировка, очень похоже, что плата рассчитана под БП мощностью до 365 Ватт, но это уже скорее с активным охлаждением (на плате есть место под разъем вентилятора, но сам разъем и необходимые компоненты отсутствуют).

Попутно измерил емкость конденсаторов.

Входные имеют суммарную емкость 166мкФ (два по 330 соединенные последовательно), хотя указано 470мкФ (соответственно суммарная 235), маловато для мощности в 240 Ватт.

Выходные в сумме дают около 6600, соответственно как указано 2200х3. Здесь вопросов нет, для блоков питания с подобными характеристиками это нормально, даже для фирменных. Правда в фирменных блоках питания стоит более качественные конденсаторы.

Так как схема блока питания практически идентична модели на 48 Вольт, то я просто внес соответствующие коррективы, а не рисовал ее с нуля. Не гарантирую 100% совпадение, но 99% думаю есть 🙂

Вот теперь можно проводить тесты.

В качестве тестового стенда использовались

1. Электронная нагрузка

2. Мультиметр

3. Осциллограф

4. Тепловизор

5. Термометр

6. Ручка и бумажка. На бумагу ссылки нет.

1. Режим холостого хода.

2. Нагрузка 5 Ампер, пульсации около 50мВ

1. Нагрузка 10 Ампер, напряжение лишь немного просело, пульсации остались на прежнем уровне

2. Нагрузка 15 Ампер, практически без изменений

Со времени проведения большого теста аккумуляторов я доработал нагрузку чтобы поднять максимальный ток до 30 Ампер. Но что-то пошло не совсем так, как было задумано и максимальный ток ограничен на уровне 16383мА (14 бит), потому для продолжения теста мне пришлось прибегнуть в обычным советским резисторам с сопротивлением 10Ом. при напряжении в 12 Вольт они обеспечивают ток нагрузки около 3.6 Ампера.

1. 20 Ампер, напряжение просело всего на 70мВ, уровень пульсация практически не отличается от предыдущих тестов и составляет 60мВ

2. В качестве дополнительного теста на нагрев я решил поднять выходное напряжение до 12.55 Вольта и погонять БП еще минут 15. Выходная мощность БП при этом была около 250 Ватт.

Как видно по фото, это практически никак не сказалось на результате.

В прошлом обзоре я был так удивлен качеством работы блока питания, что даже проводил тесты с полуторакратной перегрузкой. С БП мощностью 240 Ватт я снял 360 и только тогда начал откровенно волноваться по поводу перегрева.

Но в данном случае все немного печальнее. Для начала фото с тепловизора, снятое в самом конце теста при мощности 250 Ватт.

Самый горячий элемент — выходной дроссель, впрочем такая же картина была и при тесте БП 48 Вольт. Но как я тогда писал, на самом деле материал из которого изготовлен этот дроссель, не боится таких температур, ограничением является стойкость изоляции провода, которым он намотан.

Для компании сфотографировал нагрузочные резисторы, на которых рассеивалось всего около 50 Ватт. Электронная нагрузка при этом брала на себя около 200 Ватт, у нее температура радиаторов была 61 градус.

Как и раньше, я свел все данные в одну табличку.

Тестирование проходило при комнатной температуре, БП лежал горизонтально на столе, что несколько ухудшало тепловой режим, в вертикальном положении он охлаждался бы лучше.

Каждый этап длился 20 минут, затем шел замер температуры и повышение тока на одну ступень.

Последний этап был проведен как дополнительный и занял 15 минут, итого в сумме 20+20+20+20+15= 1ч 35мин.

Результаты заметно выше чем у БП на 48 Вольт, но я бы сказал что вполне терпимые. Самый нежный элемент — силовой трансформатор, не перегревается.

Как-то в комментариях затронули тему низкого КПД таких блоков питания и мне реально стало интересно, какой же КПД у них в реальности.

Конечно я не претендую на высокую точность, так как в процессе участвует много измерительных приборов и каждый имеет свою погрешность, но я постарался измерить максимально корректно.

И так. Я измерил потребляемую мощность БП без нагрузки, с нагрузкой 33, 66 и 100%, при этом у меня вышло:

Вход — Выход — КПД.

4.2 — 0 — 0

96.2 — 79 — 82%

189,3 — 159 — 84%

290,4 — 238 — 82%

Говорили, что КПД подобных БП около 60-70%, честно, мне не верилось. Но до этого я судил по количеству выделяемого тепла, потому как не заметить «лишние» 100 Ватт тепла тяжело, вот и решил провести этот тест, думаю что не зря.

Конечно в комментариях могут начать писать — а как же MeanWell, почему не MeanWell? Да, я очень хорошо отношусь к блокам питания этой фирмы, и очень часто их использую, потому решил ради интереса сравнить обозреваемый БП и БП фирмы MeanWell. Но стоит отметить, что сравнивал я с БП серии RS, а точнее — RS-150-12, т.е. 12 Вольт 150 Ватт. На данный момент стоимость этого БП составляет около 36 долларов — ссылка.

Блоки питания этой серии отличные, надежность действительно на высоком уровне, БП который вы видите, отработал в составе системы видеонаблюдения около 3 лет при нагрузке близкой к 90% и был заменен планово на новый.

Производитель же заявляет что —

Особенности:

Долговечные 105°C электролитические конденсаторы

Комплекс защит от короткого замыкания, перегрузки, перенапряжения

Электромагнитная совместимость: EN50082-2/EN61000-6-2 для тяжелой промышленности

Высокая рабочая температура до 70°C

Вибрации 5G

Малые размеры, высокая удельная мощность

Высокие КПД, долговечность и надежность

Все модули проходят 100% прогон

Но это относится именно к RS серии, обычные же БП MenWell серий S-ххх-хх немного проще, правда и стоят меньше.

Входной фильтр более полный, чем у обозреваемого, но варистора на входе все равно нет.

1. Термистор упакован в термоусадку, но что интересно, уже когда разбирал фото, то заметил, что термисторов два, причем второй «голый», он стоит справа от переключателя.

2. Входные конденсаторы Rubicon, а не RubiconG. Суммарная емкость 165мкФ при выходной мощности в 150 Ватт.

3. Высоковольтный транзистор имеет дополнительную изоляцию. ШИм контроллер применен другой, потому рядом совсем пусто.

4. Выходных диодных сборок две, причем у обоих на выводах присутствуют ферритовые бусины, что практически никогда не встречается в недорогих китайских БП. ТАкие же бусины есть и на некоторых конденсаторах.

5. А вот выходной дроссель изготовлен в лучших традициях Китая 🙂 Намотка кривая, закатали в какой то клей.

6. Выходные конденсаторы фирменные, емкость 1000х3 мкФ, напряжение 35 Вольт, что весьма правильно. У обозреваемого конденсаторы на 25 Вольт, но в двухтактной схеме это нормально (в компьютерных БП вообще на 16).

Сегодня не буду выделять плюсы и минусы, а просто опишу мое впечатление о блоке питания.

На мой взгляд это типичный «среднестатистический» китайский блок питания. Нагрев в пределах допуска, среднее качество сборки, но при этом низкий уровень пульсаций и отсутствие «дрейфа» выходного напряжения от прогрева (это довольно важно). Производитель не особо волнуется насчет комплектующих, об этом говорят непонятные конденсаторы на входе, если судить по маркировке, то емкость достаточна, если измерить, то занижена. Я в подобной ситуации просто добавил один конденсатор 100мкФх400В выпаянный из платы монитора.

Самые критичные элементы, которые в данном БП будут влиять на срок службы — выходные конденсаторы.

В остальном вполне нормальный блок питания, все тесты прошел без проблем, но получить такие результаты как с его 48 Вольт вариантом, я увы не смог. На мой взгляд средний блок питания за вполне приемлемые деньги.

Надеюсь что обзор был полезен, старался дать максимум информации.

mysku.ru

Какой диод мне нужно, если необходимо при 12 вольтах пропустить 20 ампер? Дайте марку, а ещё лучше справочник по ним.

<a rel=»nofollow» href=»http://www.casemods.ru/services/raschet_rezistora.html» target=»_blank»>http://www.casemods.ru/services/raschet_rezistora.html</a>

Д246 Б. В. Г. на радиаторе или параллелить- надежнее

Вообще-то таких <a rel=»nofollow» href=»http://category.alldatasheet.com/index.jsp?Searchword=DIODE2AMP» target=»_blank» >ОЧЕНЬ</a> много

вам для чего, если не секрет?

смотря для чего вам он нужен.
ибо такой бдет габаритыстый, но список приведен выше.
и можно есл скаже для кких целей и без диода обойтись

touch.otvet.mail.ru

alexxlab

Отправить ответ

avatar
  Подписаться  
Уведомление о