приборы для определения различных показателей исправности батарей

Аккумуляторные батареи имеют свой ресурс, по истечении которого их приходится менять. Причём неважно, где они устанавливаются — в автомобилях или источниках бесперебойного питания. Ёмкость прекращает соответствовать паспортной, случаются перебои в работе, необходимое напряжение выдаётся далеко не всегда. В таких случаях, чтобы понять причину выхода из строя и принять решение по замене, лучше воспользоваться тестером для проверки аккумуляторов.

Виды тестирующего оборудования

Чтобы выбрать правильный прибор для определения исправности батареи, нужно сначала убедиться в том, какие именно причины приводят к сбоям в её работе. Среди типовых неисправностей элементов питания различных устройств можно выделить такие:

  • Быстрая зарядка и разрядка.
  • Отсутствие возможности начать зарядку.
  • Утечка тока.
  • Обрыв цепей питания или повреждение пластин, погружённых в электролит.
  • Недостаточная плотность электролитической жидкости.

Оптимальный выбор для определения большинства этих неисправностей — универсальный аккумуляторный тестер, который покрывает большинство нужд автолюбителя. Но некоторые параметры, например, плотность электролита, не могут быть измерены электронными приборами, для этого используется другое, гидростатическое оборудование. Поэтому все возможные устройства для измерения могут быть такими:

  • Мультиметр — может зафиксировать обрывы цепей, измерить силу отдаваемого тока, сопротивления обкладок и контактов, напряжение, выдаваемое батареей на клеммах.
  • Нагрузочная вилка — прибор, который позволяет установить скорость разрядки батареи, определив тем самым степень её износа.
  • Измерители ёмкости — показывают текущее присутствие заряда в батарее. Используются для того, чтобы понять, насколько высохли контакты и нужно ли менять электролит на свежий.
  • Ареометры — гидростатические измерители плотности электролитической жидкости. Определяют потребность в подзарядке, могут помочь в принятии решения о замене самой жидкости или полностью всего аккумулятора.

Каждый из видов измерительных приборов может иметь несколько назначений, в зависимости от модели. Например, ареометром, кроме удельного веса электролита, можно замерять показатели тосола, поэтому каждый из типов и его самые полезные модели лучше рассмотреть подробнее.

Бытовые и промышленные мультиметры

Выбирая прибор для конкретной задачи, нужно определиться с его типом. Мультиметры, например, бывают как аналоговые, так и цифровые. Способ измерения при этом не меняется, все различия состоят исключительно в дисплее, на котором отображаются результаты.

Аналоговые мультиметры — это измерители со стрелкой, которая движется по нарисованной на заднем фоне шкале. В зависимости от положения переключателя, который находится сразу под дисплеем, выбирается одна из шкал, а по ней уже получают нужные показатели.

На сегодняшний день такие устройства малопригодны для повседневного использования, так как точность выдаваемых результатов сравнительно низка. Поэтому даже если в хозяйстве есть аналоговый мультиметр, лучше заменить его цифровым.

Электронный подвид делает работу с ним намного легче. Вместо стрелок и шкал, на экран просто выводится значение выбранной переключателем величины. При этом можно определить её значение до десятых или даже сотых, что повышает точность и даёт намного более правильное представление о проблеме.

Каждый мультиметр обладает дополнительными функциями, которые помогают в быту и ремонте приборов:

  • «Пищалка». На самом деле, это просто измеритель разницы сопротивления, но используется он для обнаружения электрических цепей и контуров, находящихся в состоянии короткого замыкания. При этом раздаётся писк, который и дал этой функции разговорное название.
  • Термопара — специальные провода, которые можно подключать к некоторым моделям. Показывают текущую температуру на той поверхности, к которой приложены.

Такие возможности помогают специалисту или любителю быстро узнать причину поломки или странного поведения устройства.

Самыми популярными моделями мультиметров в кругу радиолюбителей и автомобилистов считаются:

  • DT-832 и его более современная модификация DT-838. Это недорогие и функциональные устройства, которые иногда имеют довольно высокую погрешность при измерениях. Но именно они остаются незаменимыми в бытовом использовании или в ситуациях, когда более серьёзного оборудования нет под рукой.
  • Kemot KT30 — в качестве питания использует уже не пальчиковые батарейки, а полноценные девятивольтовые аккумуляторы типа «Крона». Имеет низкий порог измерений, такую же цену, как у предыдущей модели, но может похвастаться высокой точностью — погрешность при его использовании не превышает 1,2%.
  • UNI-T UT 60 C — более профессиональное устройство. Имеет встроенный чип памяти для хранения некоторого количества результатов последних измерений. Очень прочный корпус, стойкий к любым внешним воздействиям. Есть подсветка дисплея для работы в темноте.
  • Fluke 28-II — ультимативное устройство любого профессионала. Дорог, надёжен, точен. Способен работать в любых температурных условиях, как холодных, так и жарких. Имеет встроенные возможности осциллографа начального уровня.

Конечно, для повседневной работы слишком дорогие устройства не нужны, их вполне может заменить более дешёвый аналог. Но если приходится часто бывать в не самых благоприятных погодных условиях, стоит обратить внимание на те приборы, которые не боятся влияния стихии.

Ареометры для электролита

Насыщенность ионами металлов от электродов и свободными электронами сильно влияет на работоспособность автомобильной батареи. Чтобы её измерить, достаточно использовать ареометр. Его действие основано на гидростатическом законе, который постулирует, что чем больше плотность жидкости, тем сильнее она пытается вытолкнуть плавающий в ней объект на поверхность.

В качестве резервуара для забора такой жидкости служит колба с заборной пипеткой с одной стороны и грушей, создающей отрицательное давление, с другой.

Измерительный же элемент — это цилиндрический стеклянный поплавок, который снабжён нарисованной на нём шкалой. По ней и проводятся измерения таким образом:

  • Собирается прибор, измеритель помещается внутрь, надевается груша.
  • Пипетка погружается в электролит.
  • Грушей набирается достаточное количество жидкости.

При этом плавучая часть под воздействием небольшого грузила в нижней её части погружается в жидкость. По шкале, которая на неё нанесена, можно узнать степень разряженности батареи в процентном соотношении. Если поплавок погружён слишком низко, такой аккумулятор считается совершенно непригодным для работы. В нём могут быть оборваны контакты или слишком окислены электроды.

Так как в качестве электролита выступают кислоты, при работе стоит озаботиться собственной безопасностью — надеть резиновые толстые перчатки, очки и по возможности полотняный грубый фартук. Дыхательные пути защищаются респиратором. Это помогает избежать вредного влияния паров кислот на лёгкие и носоглотку. Поэтому эксплуатировать этот прибор для тестирования аккумуляторных батарей стоит в хорошо вентилируемом помещении.

Нагрузочные вилки

Представляют собой сочетание нагрузочного сопротивления и вольтметра в самой простой конфигурации.

Более продвинутые модели могут комплектоваться амперметром, измерителем ёмкости и даже насадками для проверки ESR у конденсаторов.

Конструктивно выглядят как металлический корпус прямоугольной формы с ручкой-держателем и проводом большой площади поперечного сечения с зажимом на конце. В корпусе находятся:

  • Нагрузочные спирали.
  • Цилиндрический стержень, выходящий наружу.
  • Циферблат вольтметра, в основном, аналоговый — со шкалой и движущейся стрелкой.

Контакты вольтметра соединены со стержнем (минус) и проводом (плюс). Использовать нагрузочную вилку в качестве тестера АКБ просто. Проверка проходит в два этапа:

  1. Замеры напряжения клемм без участия нагрузки от спиралей. Он проводится только через 5−7 часов после того, как машина была полностью заглушена или через такой же промежуток после окончания подзарядки. К плюсовому контакту подключается клемма, к минусовому нужно коснуться стержнем. Полученные в результате замеров показатели напряжения записываются.
  2. Испытание при поданной нагрузке. После её подачи нужно проделать такие же манипуляции, но при этом не держать цепь сомкнутой более пяти секунд. Кроме того, есть вероятность проскакивания искры между контактами, поэтому не стоит переживать на этот счёт.

Показатели на втором этапе не должны сильно отличаться от паспортных данных аккумулятора. Если они разнятся с ней в меньшую сторону, такую батарею можно смело заменять.

Универсальные приборы и измерители ёмкости

Это инструменты для определения одной из важнейших характеристик, которая напрямую влияет на дальнейшее использование батареи. У любого аккумулятора есть паспортная ёмкость, которая измеряется в ампер-часах.

Со временем её значение падает и держать уровень заряда такое устройство привычное время не может. При этом появляются проблемы с использованием того средства, которое питается от источника тока.

Паспортная ёмкость всегда известна, она сообщается производителем и наносится на наклейку, которая цепляется к боковой стенке. Поэтому, чтобы найти её текущую величину, нужно воспользоваться одним из таких приборов:

  • Кулон — тестер для проверки аккумуляторных батарей отечественного производства. Все измерения сохраняются в постоянной памяти прибора. Умеет не только показывать ёмкость, но и выдаваемое источником тока напряжение. При работе посылает короткий импульс, а на основании скорости получения ответа выдаёт показания.
  • Fluke — самый универсальный прибор. Измеряет напряжение, силу тока, внутреннее сопротивление элементов и ёмкость. Может применяться для температурных замеров.
  • Skat-T Auto — хороший девайс для использования в работе с двенадцативольтовыми батареями. Имеет ограничения по ёмкости батареи, не будет работать с теми моделями, которые вмещают более 120 ампер-часов. Все измерения проводит в пятнадцатисекундный срок.

Стоит помнить, что каждая из этих моделей имеет разные диапазоны измерений. Нужно внимательно их выбирать перед использованием, так как неверно указанный порядок величин может негативно отразиться на полученных результатах.

Техника безопасности

Так как работы ведутся с электрическим оборудованием, работающим с высокими показателями силы тока, стоит учитывать негативные влияния на организм человека. Электрический ток может причинять несколько видов увечий. Среди них:

  • Термические ожоги.
  • Мышечные судороги.
  • Отказ внутренних органов.

Поэтому при работе с приборами, которые подразумевают подключение клемм и замеры с пропусканием тока через них, нужно соблюдать правила безопасной эксплуатации. Позаботиться о защите рук, заземлении, сухости земли, на которой стоит человек. Лучше всего использовать обувь с прорезиненой подошвой и не допускать её намокания.

Заземлиться можно с помощью тонкого провода или куска проволоки, подсоединённого одним концом к прибору, а другим — к батарее или другой внешней металлической конструкции.

При работе с аккумуляторами нельзя допускать их перегрева. Некоторые щелочные металлы легко воспламеняются и долго горят даже на открытом воздухе. Поэтому стоит всегда держать в пределах досягаемости порошковые огнетушители.

Если батарея вскрывается для забора электролита, лучше делать это в хорошо проветриваемом помещении, чтобы не насытить воздух внутри него парами соляной кислоты. Так можно уберечься от сильных ожогов органов дыхательной системы.

proakkym.ru

Тестер емкости аккумуляторов

Емкость это одна из основных характеристик любого аккумулятора. В этой статье речь пойдет о тестере для измерения емкости литиевых аккумуляторов. Тестер собирается из готовых недорогих модулей, и неплохо себя показал. В основе измерителя емкости аккумуляторов лежит китайский модуль ZB2L3.

Это простой и в то же время функциональный модуль. С его помощью можно померить емкость любых аккумуляторов с напряжением от 1.2 до 12В. Он имеет 8-ми сегментный дисплей для вывода показаний, три светодиода которые подсвечивают что именно индицируется (емкость, ток или напряжение) в данный момент времени, разъем Micro USB для питания прибора, три кнопки управления и одну 4-х контактную клемму, к которой подключается собственно сам аккумулятор и нагрузка. При подаче питания прибор индицирует измеренное напряжение подключенного исследуемого аккумулятора. Кнопками +- задается нижний порог до которого аккумулятор будет разряжаться, а при нажатии кнопки OK запуститься режим разряда аккумулятора на нагрузку, и на дисплее поочередно будут идти показания емкости, тока потребления и напряжения. По окончании разрядки нагрузка отключиться, а на дисплее зафиксируется показание измеренной емкости в мА/ч (если емкость больше 9999 мА/ч тогда показания сдвигаются, появляется десятичная точка и отображаются в А/ч). Для теста нужно подключать к устройству полностью заряженный аккумулятор. Нагрузку нужно рассчитывать на ток не более 3А. (Например при тестировании автомобильного аккумулятора потребуется нагрузка сопротивлением: R=U/I =14/3=4.6 Om, ~ т.е. не менее 5 Ом). Теперь о моем тестере литиевых аккумуляторов.

Он состоит помимо модуля ZB2L3, из платы заряда на TP4056. Исследуемый аккумулятор подключается к клеммам прибора, при необходимости заряжается/до заряжается, (процесс зарядки включается/выключается тумблером).

А затем разряжается уже с помощью платы ZB2L3. В качестве нагрузки применяется 5 Ваттный резистор на 7 Ом (2 таких резистора входят в комплект ZB2L3).

Ток разряда при этом находится на уровне 0.5 А. Если поставить параллельно 2 таких резистора ток разряда можно поднять до 1 А, и, следовательно, уменьшить время на испытание. Конструктивно прибор собран в маленьком пластиковом корпусе.

На переднюю панель выведены светодиоды, которые с помощью тонких проводов МГТФ припаяны к платам. SMD светодиоды с плат убраны. Ну и несколько фото прибора в работе:

Подключаем аккумулятор — на дисплее отображается его напряжение.

Кнопкой включаем заряд. Пока горит красный — заряд идет, синий — заряд завершен.

Теперь выключаем заряд, двумя кнопками (крайней справа и центральной) выставляем порог, для литиевого аккумулятора принято считать что это 3,3 Вольта.

Теперь когда порог выставлен можно запустить замер. Прибор периодически отображает емкость (подсвечена верхним зеленым светодиодом), текущий ток (средний светодиод), и напряжение (нижний светодиод). На фото свечения светодиодов слабо видно.

В конце теста, когда напряжение опуститься ниже порога разряд прекратиться, а на индикаторе будет постоянно отображаться измеренная емкость. Вот один из аккумуляторов. Прибор намерил в нем 1302 mA/h. Его можно будет использовать где-то еще.

elschemo.ru

Тестер емкости аккумуляторных батарей – обзор и тестирование

Этот тестер может измерять напряжение, ток, ёмкость, может отключать (отсекать) нагрузку, дабы исключить порчу аккумулятора при тестировании. Тестер достоин того, чтобы про него почитать.
Если интересно, заходим.
Характеристики кратко:
Напряжение питания: DC 5V (Micro USB).
Рабочий ток: менее 70 мА.
Напряжение разряда: 1.00V-15.00V (разрешение 0.01V).
Напряжение отсечки: 0,5-11,0 В.
Погрешность измерения напряжения не более: 1% + 0,02 В.
Погрешность измерения тока не более: 1,5% ± 0,008A.
Максимально измеряемая ёмкость батареи: 9999Ah.
Размер печатной платы: 50 * 36 мм.
Размер изделия: 50 * 36 * 17 мм.
Вес: 18 г.
Тестер получил в запаянном антистатическом пакетике.

Увидел на странице магазина мощные резисторы (лежащие отдельно) и подумал, что это набор для самостоятельной сборки. Тестеры я ещё не собирал.
Оказалось, это обычные нагрузочные резисторы.

В принципе, это «готовый» полуфабрикат. Ничего собирать не надо. Просто бескорпусное (но законченное) изделие.

От флюса не отмыли. Но не впервой. Сам отмыл.
Комплектные резисторы имеют сопротивление 7,5 Ом (5 Вт).
Что куда подключать понятно из этого рисунка.

Одна из особенностей этого тестера в том, что для питания схемы и индикаторов используется отдельный вход 5 В (Micro USB).

Энергия аккумулятора рассеивается только на нагрузочном резисторе. Энергопотребление схемы на точность показаний не влияет.
Работой тестера управляет микроконтроллер, установленный под 4-значным 7-сегментным светодиодным дисплеем.

Сдвоенные MOSFET STT8205S (сопротивление каждого в открытом состоянии 0,028 Ом) подключены параллельно и коммутируют нагрузку. По паспорту до 20 В и 6 А (каждый).

Ток разряда аккумулятора измеряется на R020 (0,02 Ом).

На печатке есть место подключения программатора.
Схема питается от стабилизатора напряжения AMS(LM)1117 (3,3 В).

Для подключения тестируемого аккумулятора используем клеммы IN. Плюс с минусом подписаны. Путать не рекомендую. Никаких защитных диодов не обнаружил.
Всего три кнопки управления. Управление простое, интуитивно понятное. Кнопками плюс и минус задаём напряжение отсечки аккумулятора. Кнопкой ОК включаем схему в работу.
Во время работы устройство может выражать своё возмущение неловкостью оператора.
Коды ошибок:
Err1: Напряжение аккумулятора выше 15 В.
Err2: Напряжение батареи ниже напряжения отсечки.
Err3: Большое сопротивление соединительных проводов.
Err4: Перегрузка по току (ток превышает 3,1А).
Лично я наблюдал только ошибку под номером два, когда подключил аккумулятор с напряжением менее напряжения отсечки.
Странно, но я не видел ошибки под номером один, хотя подавал на него напряжение и в 16 В.
Несколько слов по поводу того как работает и для чего это нужно.
Этот тестер позволяет определять реальную отдаваемую ёмкость аккумулятора (во время разряда).
Для этого первым делом нужно полностью зарядить аккумулятор. Затем подключить его к тестеру согласно схеме. Подключить нагрузку (заранее рассчитанную на ток разряда).
Когда нагрузочный резистор и аккумулятор подключены, включаем питание тестера (Micro USB 5 В).
Выставляем напряжение отсечки (напряжение, при котором устройство отключит нагрузку, дабы не угробить аккумулятор). Для двенадцативольтового аккума это может быть напряжение 10,8 В. Всё зависит от поставленных целей и задач. Оперируем кнопками (+) или (-).
Нажимаем кнопку ОК, чтобы начать тест.
Тестер попеременно будет высвечивать измеренные ёмкость (Ah)→ток→напряжение (по кругу).
По окончании (разряде аккумулятора до заданного предела) прибор будет пульсировать измеренным значением ёмкости.
Кто не смог понять моего косноязычия, просто посмотрите видео.
Первым делом проверил в работе.
Для наглядности в качестве нагрузки подключил лампочку. Удобно наблюдать подключение/отключение нагрузки. В качестве аккумуляторной батареи взял источник питания. На нём удобно проверять сработку напряжения отсечки.

Сразу не понравилось то, что при включении питания (без аккумулятора) тестер уже показывал напряжение 0,06 В. Проблема решилось закорачиванием входных клемм.

Отлегло. Здесь всё нормально.
Прогнал весь диапазон на установке П320 (по напряжению).

Погрешность присутствует. В заявленные пределы попадает. Но для меня погрешность в 1% кажется чрезмерно большой (к хорошему привыкаешь быстро).

А вот с током совсем беда. На холостом ходу 0,09 А.
Для пущей убедительности прогнал через установку П321. Неутешительно. Беглого взгляда достаточно, чтобы всё понять.
0 А→0.090
0,1 А→0.194
1,0 А→1.124
Вот такая печаль.
Пришлось искать способы калибровки. Нашёл… Но выполнять её могу посоветовать только в крайнем случае. Не у всех имеются образцовые источники.
В принципе, можно было бы даже согласиться с тем, что имею, если бы… китайцы не накосячили, когда при калибровке нуля забыли перемкнуть токовый вход тестера. 0,09 А при отключенной нагрузке – это перебор.
Калибровка:
Для выполнения калибровки требуется образцовый источник питания, который может обеспечивать 10,00 вольт и и 2,00 ампера.
→Удерживая все 3 кнопки, подключаем питание. Тестер максимально пытается нам помочь. Все надписи соответствуют тому, что предстоит сделать.
После того, как появятся OAOu, можно приступать к калибровке.

1. Калибровка нулей тока и напряжения (OAOu).
Закорачиваем все измерительные входы и нажимаем ОК.
2. Калибровка напряжения (10.0u).

→Появляется надпись 10.0u. Подаём на входы 10 В с образцового источника и нажимаем ОК.
3. Калибровка тока (200А).

→Появляется надпись 200A. Подаём на входы 2 А с образцового источника и нажимаем ОК.
После этого запускается диагностика. Все записанные выше значения проверяются на соответствие (как именно я не знаю), и если они кажутся правильными, то они сохраняются в EEPROM. Подкорректировать что-то одно (нули, ток или напряжение) не получится. Диагностика не пропустит.


После калибровки показания вольтметра стали просто идеальными. Нет погрешности даже в сотых.
С током немного сложнее. Имеет место (я предполагаю) нагрев опорного резистора. Показания немного плавают.
0 А→0.000
0,01 А→0.010
0,1 А→0.101
0,5 А→0.499
1,0 А→0.998
2,0 А→1.997
Теперь стало поспокойнее. Такой результат меня полностью устроил.
Вот, в общем-то, и всё.
Подведу итог.
Неплохой приборчик для тестирования аккумуляторов. Можно и автомобильный аккумулятор проверить.
Из недостатков могу выделить только один: не может измерять количество пропускаемой энергии (это самый правильный способ оценки аккумуляторов).
Чтобы сделать правильный вывод, того, что написал, должно хватить.
На китайском рынке присутствуют другие очень похожие тестеры под маркой ZB2L3. Чем отличаются, не знаю. Описал работу того, что держу в руках.
Кому что-то неясно, задавайте вопросы. Надеюсь, хоть кому-то помог.
Удачи всем!

Товар предоставлен для написания обзора магазином. Обзор опубликован в соответствии с п.18 Правил сайта.

mysku.ru

Arduino тестер емкости батареи своими руками » NGIN.pro

Arduino тестер емкости батареи своими руками » NGIN.pro – Arduino, Raspberry Pi, умный дом, интернет вещей, крутые проекты, статьи, новости и полезная информация Arduino тестер емкости батареи своими руками Arduino тестер емкости батареи своими руками
Проект очень простой и основан на законе Ома.


Шаг 1: Элементы и необходимые инструменты1. Arduino Nano2. 0,96 “OLED-дисплей3. МОП-транзистор – IRLZ444. Резисторы (4 х 10кОм, 1/4W)5. Резисторы (10кОм, 10Вт)6. Винтовые клеммы (3 NOS)7. Зуммер8. 18650 БатареяНеобходимые инструменты:1. Кусачки2. Припой

Шаг 2: Схема и принцип работы

Схема:
Конструкция очень проста, который основан на Arduino Nano. OLED-дисплей используется для отображения параметров. Винтовые клеммы используются для подключения аккумуляторной батареи и нагрузки сопротивления. Зуммер используется для подачи  сигнала тревоги. Два делители напряжения цепи используются для контроля напряжения на сопротивлении нагрузки. МОП-транзистор для возможности подключать или отключать сопротивление нагрузки с батареей.
Принцип работыArduino проверяет состояние батареи, если батарея нормальная, дает команду на ВКЛЮЧЕНИЕ полевого транзистора. Это позволяет току проходить от положительной клеммы батареи, через резистор, МОП-транзистори затем завершает путь обратно к отрицательному полюсу. Это разряжает батарею в течение периода времени. Arduino измеряет напряжение на нагрузке, а затем разделяет на сопротивление, чтобы выяснить, ток разряда. Умножаем это на время, чтобы получить

ngin.pro

USB тестер (мультиметр) KCX 017 + тест емкости батареи смартфона и power bank

Всем привет.
Сегодня расскажу вам о покупке в Китае электронного USB тестера(мультиметра) модели KCX-017. Долгое время хотел замерить емкость батарей смартфонов и различных Power Bank -ов. Сражу скажу, что в данном тесте замерены емкости смартфона Homtom HT6 c огромной батареей и Power Bank от Xiaomi на 10000mAh.
Начнем как обычно с посылки:

Внутри был пакет с самим устройством и больше ничего, ни инструкции, ни упаковки, поэтому сразу перейду к внешнему виду. На лицевой стороне расположен ЖК экран и кнопка управления. С правого торца выходит кабель USB, а также разъем микро USB — эти разъемы работают на вход. На левом торце расположен выход — USB разъем. Ну и на задней стороне приведены основные характеристики.




При включении KCX-017 отображает следующую информацию:
— напряжение+ скачки напряжения(стрелачками вверх/вниз)
— силу тока
— емкость, которая прошла через устройство
— ячейку памяти

Ну а теперь перейдем к тестам. В тесте емкости батарей, напомню, участвует HOMTOM HT6 батарея 6250mAh( https://youtu.be/l-7hTVuJPFA ) и Power Bank на 10000mAh(https://youtu.be/J3I8T4zbUxA ). Результаты получились следующие:


Как видно из фото ни одна батарея не показала заявленной емкости и сначала я был просто удивлен, но когда решил вычислить разность между измерением и заявленной производителем емкостью, был сильно поражен. Что в первом, что во втором устройстве данная разница составила 20% с разницей в несколько десятых процента. Исходя из этого, получается, что емкости в теории совпадают с заявленными и все ложные измерения по вине KXC-017.
Исходя из этого основные плюсы и минусы устройства:
Плюсы:
1. компактный
2. Недорогой
3. Достаточно качественно исполнен
Минусы:
1. Большой вопрос к точности(особенно измерению емкости)
2. Отсутствие упаковки и инструкции
Вывод:
KCX-017 отлично подойдет для домашнего использования, так как по большей части это все же игрушка. А точность измерения емкости повергает в шок, однако можно поймать эту погрешность, но не всегда. Вообщем любителю самое то!
Полный обзор и тест здесь:


P.S. Участвуйте в конкурсе. Подробности в видео!

mysku.ru

Измеритель емкости конденсаторов своими руками: принцип, схема

Конденсатор — элемент электрической цепи, состоящий из проводящих электродов (обкладок), разделённых диэлектриком. Предназначен для использования его электрической ёмкости. Конденсатор, ёмкостью С, к которому приложено напряжение U, накапливает заряд Q на одной стороне и — Q — на другой. Ёмкость здесь в фарадах, напряжение — вольтах, заряд — кулоны. Когда ток силой 1 А протекает через конденсатор ёмкостью 1 Ф напряжение изменяется на 1 В за 1 с.

Одна фарада ёмкость огромная, поэтому обычно применяются микрофарады (мкФ) или пикофарады (пФ). 1Ф = 106 мкФ = 109 нФ = 1012 пФ. На практике используются значения от нескольких пикофарад до десятков тысяч микрофарад. Зарядный ток конденсатора отличается от тока через резистор. Он зависит не от величины напряжения, а от скорости изменения последнего. По этой причине для измерения ёмкости требуются специальные схемные решения, применительно к особенностям конденсатора.

Обозначения на конденсаторах

Проще всего определить значение ёмкости по маркировке, нанесённой на корпус конденсатора.

Электролитический (оксидный) полярный конденсатор, ёмкостью 22000 мкФ, рассчитанный на номинальное напряжение 50 В постоянного тока. Встречается обозначение WV — рабочее напряжение. В маркировке неполярного конденсатора обязательно указывается возможность работы в цепях переменного тока высокого напряжения (220 VAC).

Плёночный конденсатор ёмкостью 330000 пФ (0.33 мкФ). Значение в этом случае, определяется последней цифрой трёхзначного числа, обозначающей количество нолей. Далее буквой указана допустимая погрешность, здесь — 5 %. Третьей цифрой может быть 8 или 9. Тогда первые две умножаются на 0.01 или 0.1 соответственно.

Ёмкости до 100 пФ маркируются, за редкими исключениями, соответствующим числом. Этого достаточно для получения данных об изделии, так маркируется подавляющее число конденсаторов. Производитель может придумать свои, уникальные обозначения, расшифровать которые не всегда удаётся. Особенно это относится к цветовому коду отечественной продукции. По стёртой маркировке узнать ёмкость невозможно, в такой ситуации не обойтись без измерений.

Вычисления с помощью формул электротехники

Простейшая RC — цепь состоит из параллельно включённых резистора и конденсатора.

Выполнив математические преобразования (здесь не приводятся), определяются свойства цепи, из которых следует, что если заряженный конденсатор подключить к резистору, то он будет разряжаться так, как показано на графике.

Произведение RC называют постоянной времени цепи. При значениях R в омах, а C — в фарадах, произведение RC соответствует секундам. Для ёмкости 1 мкФ и сопротивления 1 кОм, постоянная времени — 1 мс, если конденсатор был заряжен до напряжения 1 В, при подключении резистора ток в цепи будет 1 мА. При зарядке напряжение на конденсаторе достигнет Vo за время t ≥ RC. На практике применяется следующее правило: за время 5 RC, конденсатор зарядится или разрядится на 99%. При других значениях напряжение будет изменяться по экспоненциальному закону. При 2.2 RC это будет 90 %, при 3 RC — 95 %. Этих сведений достаточно для расчёта ёмкости с помощью простейших приспособлений.

Схема измерения

Для определения ёмкости неизвестного конденсатора следует включить его в цепь из резистора и источника питания. Входное напряжение выбирается несколько меньшим номинального напряжения конденсатора, если оно неизвестно — достаточно будет 10–12 вольт. Ещё необходим секундомер. Для исключения влияния внутреннего сопротивления источника питания на параметры цепи, на входе надо установить выключатель.

Сопротивление подбирается экспериментально, больше для удобства отсчёта времени, в большинстве случаев в пределах пяти — десяти килоом. Напряжение на конденсаторе контролируется вольтметром. Время отсчитывается с момента включения питания — при зарядке и выключении, если контролируется разряд. Имея известные величины сопротивления и времени, по формуле t = RC вычисляется ёмкость.

Удобнее отсчитывать время разрядки конденсатора и отмечать значения в 90 % или 95 % от начального напряжения, в этом случае расчёт ведётся по формулам 2.2t = 2.2RC и 3t = 3RC. Таким способом можно узнать ёмкость электролитических конденсаторов с точностью, определяемой погрешностями измерений времени, напряжения и сопротивления. Применение его для керамических и других малой ёмкости, с использованием трансформатора 50 Hz, вычислением емкостного сопротивления — даёт непрогнозируемую погрешность.

 Измерительные приборы

Самым доступным методом замера ёмкости является широко распространённый мультиметр с такой возможностью.

В большинстве случаев, подобные устройства имеют верхний предел измерений в десятки микрофарад, что достаточно для стандартных применений. Погрешность показаний не превышает 1% и пропорциональна ёмкости. Для проверки достаточно вставить выводы конденсатора в предназначенные гнёзда и прочитать показания, весь процесс занимает минимум времени. Такая функция присутствует не у всех моделей мультиметров, но встречается часто с разными пределами измерений и способами подключения конденсатора. Для определения более подробных характеристик конденсатора (тангенса угла потерь и прочих), используются другие устройства, сконструированные для конкретной задачи, не редко являются стационарными приборами.

В схеме измерения, в основном, реализован мостовой метод. Применяются ограничено в специальных профессиональных областях и широкого распространения не имеют.

Самодельный С — метр

Не принимая во внимание разные экзотические решения, такие как баллистический гальванометр и мостовые схемы с магазином сопротивлений, изготовить простой прибор или приставку к мультиметру по силам и начинающему радиолюбителю. Широко распространённая микросхема серии 555 вполне подходит для этих целей. Это таймер реального времени со встроенным цифровым компаратором, в данном случае используется как генератор.

Частота прямоугольных импульсов задаётся выбором резисторов R1–R8 и конденсаторов С1, С2 переключателем SA1 и равняется: 25 kHz, 2.5 kHz, 250 Hz, 25Hz — соответственно положениям переключателя 1, 2, 3 и 4–8. Конденсатор Сх заряжается с частотой следования импульсов через диод VD1, до фиксированного напряжения. Разряд происходит во время паузы через сопротивления R10, R12–R15. В это время образуется импульс длительностью, зависимой от емкости Сх (больше ёмкость — длиннее импульс). После прохождения интегрирующей цепи R11 C3 на выходе появляется напряжение, соответствующее длине импульса и пропорциональное величине ёмкости Сх. Сюда и подключается (Х 1) мультиметр для измерения напряжения на пределе 200 mV. Положения переключателя SA1 (начиная с первого) соответствуют пределам: 20 пФ, 200 пФ, 2 нФ, 20 нФ, 0.2 мкФ, 2 мкФ, 20 мкФ, 200 мкФ.

Наладку конструкции необходимо делать с прибором, который будет применяться в дальнейшем. Конденсаторы для наладки надо подобрать с ёмкостью, равной поддиапазонам измерений и как можно точнее, от этого будет зависеть погрешность. Отобранные конденсаторы поочерёдно подключаются к Х1. В первую очередь настраиваются поддиапазоны 20 пФ–20 нФ, для этого соответствующими подстроечными резисторами R1, R3, R5, R7 добиваются соответствующих показаний мультиметра, возможно придётся несколько изменить номиналы последовательно включённых сопротивлений. На других поддиапазонах (0.2 мкФ–200 мкФ) калибровка проводится резисторами R12–R15.

Провода, соединяющие резисторы с переключателем должны быть как можно короче, а если позволяет конструкция — размещены на его выводах. Переменные желательно использовать многооборотные, лучше вообще — постоянные, но это не всегда возможно. Тщательнейшим образом необходимо отмыть печатную плату от флюса и другой грязи, иначе паразитные ёмкости и сопротивления между проводниками могут привести к полной неработоспособности изделия.

При выборе источника питания следует учитывать, что амплитуда импульсов напрямую зависит от его стабильности. Интегральные стабилизаторы серии 78хх вполне здесь применимы Схема потребляет ток не более 20–30 миллиампер и конденсатора фильтра ёмкостью 47–100 микрофарад будет достаточно. Погрешность измерений, при соблюдении всех условий, может составить около 5 %, на первом и последнем поддиапазонах, по причине влияния ёмкости самой конструкции и выходного сопротивления таймера, возрастает до 20 %. Это надо учитывать при работе на крайних пределах.

Конструкция и детали

R1, R5 6,8k R12 12k R10 100k C1 47nF

R2, R6 51k R13 1,2k R11 100k C2 470pF

R3, R7 68k R14 120 C3 0,47mkF

R4, R8 510k R15 13

Диод VD1 — любой маломощный импульсный, конденсаторы плёночные, с малым током утечки. Микросхема — любая из серии 555 (LM555, NE555 и другие), русский аналог — КР1006ВИ1. Измерителем может быть практически любой вольтметр с высоким входным сопротивлением, под который проведена калибровка. Источник питания должен иметь на выходе 5–15 вольт при токе 0.1 А. Подойдут стабилизаторы с фиксированным напряжением: 7805, 7809, 7812, 78Lxx.

Вариант печатной платы и расположение компонентов

Видео по теме

profazu.ru

Прибор для измерения ёмкости конденсаторов

Из заголовка статьи понятно, что сегодня речь пойдет о приборе для измерения ёмкости конденсаторов. Не в каждом простом мультиметре есть данная функция. А ведь при изготовлении очередной самоделки мы очень часто задумываемся: будет ли она работать, исправны ли конденсаторы, которые мы применили, как их проверить.Да и просто в процессе ремонта данный прибор будет необходим. Проверить на целостность электролитический конденсатор, конечно, можно при помощи тестера. Но мы узнаем: живой он или нет, а вот определить ёмкость , насколько он сухой, мы не сможем.

В некоторых дешевых мультиметрах, которые присутствуют сейчас на рынке, имеется эта функция. Но предел измерения ограничен цифрой в 200 микрофарад. Что явно мало. Нужно хотя бы четыре тысячи микрофарад. Но такие мультиметры стоят на порядок выше. Поэтому я наконец-то решил купить измеритель ёмкости конденсаторов. Выбирал самый дешевый с приемлемыми характеристиками. Остановил свой выбор на XC6013L:

Поставляется это устройство в красивой коробке. Правда, на коробке изображение другого мультиметра:

А сверху наклейка с моделью данного прибора, наверно, у китайцев не хватает коробок:

Прибор заключён в защитный желтый кожух из мягкой пластмассы, похожей на резину. В руках чувствуется увесистость, что говорит о серьезности прибора. С нижней стороны имеется откидная подставка, которая многим может и не пригодиться:

Питается измеритель ёмкости от батарейки напряжением 9 вольт типа крона, которая поставляется в комплекте:

Характеристики прибора просто великолепны. Он может производить измерения от 200 пикофарад до 20 тысяч микрофарад. Что вполне достаточно для радиолюбительских целей:

Сверху прибора расположился большой и информативный жидкокристаллический дисплей. Под ним находятся две кнопки. Слева — красная кнопка, при помощи которой можно зафиксировать на дисплее текущее показание ёмкости. А справа — синяя кнопка, которая очень порадовала, — подсветкой экрана, что, несомненно, является плюсом данного прибора. Между кнопками имеется коннектор для измерения малогабаритных конденсаторов. Правда, проверить бушные конденсаторы, выпаянные из плат доноров, не получается, так как контактные площадки расположены достаточно глубоко. Поэтому данным коннектором можно воспользоваться, только проверяя конденсаторы с длинными выводами:

Под селектором выбора диапазонов измерений находится коннектор для подключения щупов. Кстати, щупы выполнены из такого же материала, как защитный кожух прибора, наощупь они довольно-таки мягкие:

Там же находится, несомненно, самая важная функция прибора — это установка нулевых показаний при измерении ёмкостей в разряде пикофарад. Что наглядно видно на следующих двух фотографиях. Здесь умышленно извлечен один щуп и при помощи регулятора выставлен ноль:

Здесь щуп поставлен на место. Как видите, ёмкость щупов влияет на показания. Теперь достаточно при помощи регулятора выставить ноль и произвести измерения, что будет достаточно точно:

Теперь давайте протестируем прибор в работе и посмотрим, на что он способен.

Тестируем измеритель ёмкости конденсаторов

Для начала будем проверять конденсаторы заведомо исправные, новые и извлечённые из плат доноров. Первым будет подопытный на 120 микрофарад. Это новый экземпляр. Как видите, показания слегка занижены. Кстати, таких конденсаторов у меня штуки 4, и ни один не показал 120 микрофарад. Возможна погрешность прибора. А может, сейчас делают одну некондицию:

Вот одна тысяча микрофарад, весьма точно:

Две тысячи двести микрофарад, тоже неплохо:

А вот десять  микрофарад:

Ну а теперь сто микрофарад, очень хорошо:

Давайте посмотрим на показания прибора, которые он покажет при проверке дефектных конденсаторов, которые были извлечены во время ремонта монитора samsung. Как видите, разница ощутима:

Вот такие получились результаты. Конечно, в некоторых случаях неисправность электролитического конденсатора видна визуально. Но в большинстве случаев без прибора обойтись сложно. К тому же я тестировал данный прибор на двух платах, проверяя конденсаторы, не выпаивая их. Устройство показало неплохие результаты, только в некоторых случаях нужно соблюдать полярность. Поэтому я советую купить такой прибор, и вы сможете измерять ёмкость конденсаторов своими руками.

Смотрим видеоверсию данной статьи:

.

radiobezdna.ru

alexxlab

leave a Comment