Содержание

Различия x1 x4 x8 x16?

Опубликовано 01.01.2019, 10:46   · Комментарии:15

PCI Express, полное техническое название “Peripheral Component Interconnect Express”, но зачастую воспринимаемый сокращенной аббревиатурой PCIe или PCI-E, это стандартный тип подключения для внутренних девайсов, такие как видеокарты, звуковые карты, wifi адаптеры и прочих периферийных устройств на персональном компьютере.

Разбираемся в различиях PCI-E разъема.

Как правило, данный высокоскоростной порт относится к фактическим слотам расширения на материнской плате, которые принимают платы расширения на основе традиционного PCIe и типы карт расширения.

Старая видеокарта с интерфейсом AGP

PCI Express практически заменил AGP и PCI, оба из которых заменили старейший широко используемый тип соединения, называемый ISA. Хотя пк могут содержать различные слоты расширения, PCI Express считается стандартным внутренним интерфейсом самого быстрого разъема. Сегодня многие материнские платы для персональных компьютеров производятся только с разъемами PCI Express.

Как работает PCI Express?

Подобно старым стандартам, таким как PCI и AGP, устройство на базе Express физически переходит в высокоскоростной разъем на материнской плате.

Интерфейс этого разъема обеспечивает высокоскоростную связь между устройством и системной платой, а также другим оборудованием.

Хотя это не очень распространено, также существует внешняя версия высокоскоростного порта, что неудивительно называется External PCI Express, но часто сокращается до PCIe. Для устройств ePCIe, являющихся внешними, требуется специальный кабель для подключения любого внешнего устройства PCIe к пк через порт PCIe, обычно расположенный на задней панели пк, поставляемый либо материнской платой, либо специальной внутренней PCIe-картой.

Какие типы карт PCI Express существуют?

Благодаря требованию более быстрых, реалистичных видеоигр и инструментов редактирования видео, видеокарты были первыми типами компьютерной периферии, чтобы воспользоваться преимуществами, предлагаемыми непосредственно PCIe.

В то время как видеокарты по-прежнему остаются наиболее распространенным типом PCIe-карты, вы обнаружите, что другие девайсы, которые значительно быстрее подключаются к системной плате, процессору и ОЗУ. Также все чаще производятся PCIe-соединения вместо обычного PCI. Например, многие высококачественные звуковые карты теперь используют высокоскоростной порт, а также повышают количество проводных и беспроводных сетевых интерфейсных карт.

Карты контроллера жесткого диска могут быть наиболее полезными для PCI-E после видеокарты. Подключение высокоскоростного SSD-накопителя к этому высокоскоростному интерфейсу позволяет значительно быстрее считывать, потом записывать диск. Некоторые контроллеры жестких дисков PCIe даже включают встроенный SSD, сильно изменяя, как устройства хранения традиционно подключены внутри пк.

Конечно, замена PCIe на PCI и AGP полностью на более новые системные платы, почти каждый тип внутренней карты расширения, основанной на старых интерфейсах, перестраивается для возможности использования шины PCI Express. Это включает в себя такие вещи, как карты расширения USB, карты Bluetooth и т.д.

Каковы различные форматы PCI Express?

Показаны различные контроллеры на материнской плате

Express x1 … Express 3.0 … Express x16. Что означает «х»? Как узнаете, поддерживает ли ваш пк? Если есть карта PCI Express x1, и есть только разъем Express x16, совместимо ли это работает? Если нет, каковы ваши варианты?

Часто не совсем понятно, когда вы покупаете карту расширения для своего компьютера, такую ​​как новая видеокарта, какая из различных технологий PCIe работает с вашим пк лучше, чем другая. Однако, насколько это сложно, все выглядит довольно просто, как только вы поймете две важные части информации о высокоскоростном порте: часть, описывающую физический размер, и часть, описывающую технологическую версию, как описано ниже.

Размеры PCIe: x16, x8, x4, и x1

Как следует из заголовка, число после x указывает физический размер платы PCI-E или слота, причем x16 самый большой, а x1 наименьший.

Вот как формируются различные размеры:

Количество контактовДлина
PCI Express x11825 мм
PCI Express x84956 мм
PCI Express x168289 мм

Независимо от размера высокоскоростного порта или карты, ключевой вырез, это небольшое место в карте или слоте, всегда находится на выводе 11. То есть, длина вывода 11 продолжает увеличиваться по мере перехода от PCIe x1 к PCIe x16. Это позволяет гибко использовать карты одного размера вместе со слотами другого.

Карты PCIe подходят в любом слоте высокопроизводительного порта на системной плате, который по крайней мере такой же большой. Например, карта PCIe x1 будет входить в любой слот PCIe x4, PCIe x8 или PCIe x16. Карта PCIe x8 будет входить в любой слот PCIe x8 или PCIe x16. PCIe-карты, размер которых больше, чем слот PCIe, могут входить в меньший слот, но только если этот слот PCI-E открытый (т.е. Не имеет пробки в конце гнезда).

Видеокарта Radeon с интерфейсом PCI-Express x16

В целом, большая плата Express или слот поддерживает большую производительность, предполагая, что две карты или слоты, которые сравниваете, поддерживают одну и ту же версию PCIe.

Версия PCIe: 4.0, 3.0, 2.0 и 1.0

Любое число после PCIe, которое вы найдете на устройстве или системной плате, указывает номер последней версии используемой спецификации PCI Express.

Вот как сравниваются различные версии контроллера PCI Express:

Пропускная способность (на полосу)Пропускная способность (на полосу в слоте x16)
PCI Express 1.02 Гбит/с (250 МБ/с)32 Гбит/с (4000 МБ/с)
PCI Express 2.04 Гбит/с (500 МБ/с)64 Гбит/с (8000 МБ/с)
PCI Express 3.07.877 Гбит/с (984,625 МБ/с)126,032 Гбит/с (15754 МБ/с)
PCI Express 4.015.752 Гбит/с (1969 МБ/с)252,032 Гбит/с (31504 МБ/с)

Все версии высокоскоростного порта совместимы в обратном и обратном направлении, что означает независимо от того, какую версию поддерживает плата PCIe или ваша материнская плата, они должны работать вместе, по крайней мере, на минимальном уровне. Как можно заметить, основные обновления стандарта порта резко увеличивают пропускную способность каждый раз, значительно увеличивая потенциал того, что может сделать связанное оборудование.

Улучшения версии также устраняют ошибки, добавленные функции и улучшенное управление питанием, но увеличение полосы пропускной способности это самое важное изменение для заметок от версии к версии.

Максимизация совместимости совместно с PCIe

Как вы читаете в разделах размеров и версий выше, использует практически любую конфигурацию, которую вы можете себе представить. Если он физически подходит, он вероятно, работает … это здорово. Однако важно знать, что для увеличения пропускной способности (которая обычно соответствует максимальной производительности) вам нужно выбрать самую высокую версию PCIe, поддерживаемую вашей материнской платой, и выбрать самый большой размер данного порта, который будет соответствовать.

Например, графическая карта на высокоскоростном порту 3.0 x16 даст вам максимальную производительность, но только если материнская плата поддерживает высокоскоростной порт версии 3.0 и имеет свободный высокоскоростной порт x16. Если модель системной платы использует исключительно PCIe 2.0, карта будет работать только с поддерживаемой скоростью (например, 64 Гбит/с в слоте x16).

Большинство материнских плат и персональных компьютеров, выпущенных в 2013 году или позже, вероятно, поддерживают Express v3.0. Если вы не уверены, проверьте руководство по материнской плате или пк. Если не получается найти какую-либо окончательную информацию о версии PCI, возможности использования вашей материнской платой, я рекомендую купить самую большую и последнюю версию PCIe-карты, если она подойдет, конечно.

Что заменит PCIe?

Очки виртуальной реальности VR

Разработчики видеоигр всегда ищут игры, которые становятся все более реалистичными, но могут сделать это только в том случае, если они смогут передавать больше данных из своих игровых программ в гарнитуру VR или на экран пк, и для этого требуются более быстрые интерфейсы. Из-за этого PCI Express никак не будет продолжать господствовать над своими лаврами. PCI Express 3.0 удивительно быстрый, но мир стремится сделать невероятно быструю передачу.

PCI Express 5.0, который должен быть завершен к 2019 году, будет использовать пропускную способность 31,504 гигабит в секунду на полосу (3938 мегабайт в секунду), что в два раза больше, чем предлагается у высокоскоростного разъема версии 4.0. Существует ряд других стандартов интерфейса, отличных от PCIe, на которые смотрит технологическая индустрия, но поскольку для них потребуются серьезные аппаратные изменения, PCIe, похоже останется лидером в течение некоторого, очень продолжительного времени как самый быстрый из существующих когда-либо.

fps-up.ru

В чем разница между интерфейсами pci express x16 3.0 и 2.0?

PCI можно примерно перевести как «разъем для подключения периферийных составляющих». Этот сокет еще довольно часто встречается даже на новых материнских платах, однако, давно уже есть улучшенный PCI Express. Разница у них в том, что первый работает параллельно, а последний работает последовательно. Ну а по скорости последний значительно превышает устаревающий.

PCI-E тоже пошел дальше. Теперь на рынке выделяют две основные конфигурации: PCI Express 2.0 и 3.0. Геймеры по достоинству оценили такое развитие, ведь постоянно растущее обилие компьютерных игр требует новой производительности видеокарт. Именно поэтому кроме аналогичных разъёмов x1, x4, наверное, самым популярным является PCI Express x16. О нем сегодня пойдет речь.

А «ПиСиАй» — это вообще где?

Этот разъем обычно находится на материнской плате внизу возле чипсета. Распознать его легко так как он довольно широкий, а также обычно подписывается. Его цвет может быть самым разным: синий, желтый, оранжевый…. Здесь нет определённой привязки.

Но что это за цифры в обозначении данного сокета?

Сначала разберемся что такое x (x4, x1). Это линии, по которым проходит информация. Соответственно x1

 означает 1 линия, x2 – две и так далее. 2.0 или 3.0 —  это номер модификации, то есть апгрейда данного слота. Чем больше число, тем новее слот.

Означает ли это, что всегда нужно обязательно использовать более новую модификацию?

Чтобы разобраться, нужно сперва понять, какими характеристиками обладают данные устройства сопряжения версий 2.0, 3.0.

v 2.0 обладает следующими параметрами:

  • Пропускная способность до 8.0 Гбайт/с.
  • Имеет улучшенный протокол передачи данных.
  • Поддерживает горячую замену.
  • Обратно совместим с устройствами, имеющими интерфейс v 1.1.

v 3.0 имеет такие параметры:

  • Пропускная способность до 15.8 Гбайт/с.
  • Модифицированная технология передачи данных.
  • Поддерживает горячую замену.
  • Обратно совместим с устройствами, имеющими интерфейсы 2.0, 1.1.

Слот 3.0

И что из этого?

Как видим, обе спецификации имеют много общего, такие как поддержка «горячего» подключения, а также обратная совместимость с предыдущими модификациями интерфейса. Технология обмена данными у обеих также постоянно меняется. Кстати, интересная деталь: можно самому вычислить пропускную способность остальных слотов одной модификации (x1, x2, x4, x8…) зная пропускную способность только одной из них.

Все дело в том, что это значение увеличивается вдвое вместе с увеличением количества линий. Например, мы знаем, что пропускная способность PCI-E x2 2.0 равняется 1.0 Гбайт/с. Умножаем «в столбик» (шучу). Получаем 2 Гбайт/с для x4, а 4 Гбайт/с для x8 соответственно. Но чтобы не запутаться, нужно помнить, что линии тоже увеличиваются вдвое, то есть после x1 идет x2, потом x4 и так далее. Пока максимальное количество линий таких слотов равно 16.

Так все же есть ли разница между PCI Express x16 версии 3.0 и версии 2.0?

Давайте разберемся. PCI-E v 2.0. Появился на свет в 2007 году. Имеет отличные скоростные характеристики. В значительную часть «геймерских» материнских плат включили этот разъём.

PCI-E v 3.0. Является неким продолжением указанной линейки интерфейсов. Вышел уже в 2010 году. Имеет удвоенную пропускную способность по сравнению со старшим «братом».

В Действительности, с выходом данной модификации открылись совершенно новые возможности в гейминге, векторном и 3D построении изображения, а также в мультипликационной сфере. Сегодня эта версия остается наиболее популярной.

Значит, все-таки, нужно покупать то, что новее?

Однако, не нужно спешить с выводами. Ведь кроме вышеупомянутого есть другие детали, на которые стоит обязательно обратить внимание дабы не быть разочарованным, например, при сборке ПК на той или иной материнской плате.

Какие это детали?

Для того чтобы выйти на какую-либо производительность рекомендуется:

  • Учитывать сначала интерфейс подключаемого устройства. Если, к примеру, вы только собираетесь приобрести видеокарту, то рекомендуется прежде всего уточнить какой у вас интерфейс.
  • Проверить совместимость устройств сопряжения. Нет смысла покупать карту, где есть PCI-E v 3.0 для материнской платы в которой PCI-E v 2.0. Прироста в производительности больше чем у разъема меньшей версии вы все равно не получите. И наоборот: карта со старшей версией не будет лучше работать на более новом слоте.
  • Узнайте, на что еще может быть способен Ваш компьютер. Не спешите делать полный апгрейд вашего ПК, не разобравшись с максимальными возможностями его составляющих. Возможно, можно приобрести иную карту для старого разъёма только улучшенной спецификации и этого будет достаточно.

Вывод: нужно разобраться в спецификациях оборудования перед тем как совмещать его составляющие.

Когда же нужно обновляться?

Конечно, если у вас старое «железо» и выжав из него максимум, вы не дотягиваете до желаемой производительности, здесь необходимо начать с апгрейда самой «материнки».

Однако, бывает и такое, что пользователь попросту пренебрёг настройкой и разъем попросту не работает так как мог бы. Потому за частую ошибочно переплачивает за новую спецификацию. Здесь лучше сто раз перепроверить чем один раз переплатить или купить то, что вообще несовместимо с Вашей системой.

vchemraznica.ru

Интерфейс видеокарты. PCI Express x16, PCI Express 2.0

Стандартным интерфейсом для подключения видеокарт на данный момент является шина PCI-Express (PCIe или PCI-E), которая пришла на смену AGP.

PCI-Express 16x и PCI-Express 2.0 – наиболее используемые интерфейс для подключения дискретных видеокарт. Основное различием между этими версиями в том, что в версии 2.0 была увеличена максимальная пропускная способность до 8 Гбит/с в каждом направлении, а также увеличивает возможности энергоподачи до 300 Вт, для этого на видеокарты устанавливается 2 x 4-штырьковый разъем питания.

 

PCI-Express реализован в различных версиях, отличающихся пропускной способностью: 1x, 2x, 4x, 8x, 16x и 32х. Видеоинтерфейс PCI-E 16x обеспечивает пропускную способность равную 4 Гб/с в каждом направлении. Также были реализации PCI-Exp 8x (в бюджетных SLI- или CrossFire-решениях) и PCI-E 4x (или PCI-Express Lite).

Конечно, чем выше пропускная способность видеокарты, тем выше производительность и FPS в играх. Однако, у видеоинтерфейса AGP пропускная способность была практически такой же, как и у ранних версиях PCI-Express, и преимущество последнего было в масштабировании, а значит можно было подключить одновременно до четырех видеокарт.

Стандарт PCI-Express обеспечивает мощность питания: по напряжению 3,3 В до 3 А, по 12 В – до 5,5 А. Таким образом всего до 76 Вт отдаваемой видеокарте мощности. Но даже этого некоторым видеокартам не хватает и на них устанавливают один или несколько дополнительных 6-контактных разъема PCI-Express, при этом каждый способен дополнительно обеспечить ток по шине 12 В – до 6 А, а значит всего 72 или 144 Вт мощности. Значит PCI-Express 1.1 может обеспечить питание видеокарты, которые потребляют до 220 Вт электроэнергии.

Видеостандарт AGP имеет до 42 Вт отдаваемой мощности, так как по шине питания 3,3 В видеокарта потребляет до 6 А, по 5 В – до 2 А, по 12 В – 1А.

AGP (Accelerated Graphics Port) –32-битная системная шина для видеокарты. Стандарт был разработан в 1997 году компанией Intel. Хоть стандарт является устаревшим, в продаже все еще можно встретить видеокарты с этим видеоинтерфейсом.

Для сравнения с пропускной способностью PCI Express приведем пример нескольких вариантов шины AGP:

  • AGP 1х — 266 Мб/с;
  • AGP 2х — 533 Мб/с;
  • AGP 4х -1,07 Гб/с;
  • AGP 8х — 2,1 Гб/с.

hardwareguide.ru

PCI Express 1x, 4x, 8x, 16x

PCI Express является новым серийным того автобусе до PCI серии спецификаций.

PCI Express, как высокая пропускная способность, малое число выводов, последовательный, технология межсоединений. Архитектура PCI Express обеспечивает высокую производительность ввода / вывода инфраструктуры для настольных платформ со скоростью передачи, начиная с 2,5 Гига переводов в секунду на PCI Express x1, полоса для Gigabit Ethernet, ТВ-тюнеры, 1394a / B контроллеры, так и общего назначения I / O. Архитектура PCI Express обеспечивает высокую графическую производительность инфраструктуры для настольных платформ удвоение возможностей существующих конструкций AGP8x со скоростью передачи 4,0 гигабайт в секунду на x16 PCI Express Lane для графических контроллеров. ExpressCard использованием интерфейса PCI Express, разработанная группой PCMCIA для мобильных компьютеров. PCI Express Расширенные функции управления питанием помогают продлить жизнь батареи и платформы, чтобы предоставить пользователям возможность работать в любом месте, без подключения к источнику питания переменного тока.

Широкое внедрение PCI Express в мобильных, корпоративных и коммуникационных сегментов позволяет конвергенции за счет повторного использования общих технологий соединительные.

PCI-E представляет собой последовательную шину, которая использует два низковольтных дифференциальных LVDS пары, в 2,5 Гбит / с в каждом направлении [один передачи, и одна пара получать]. PCI Express 1x поддерживает [2,5 Гбит], 2x, 4x, 8x, 12x, 16x, 32x и ширины шины [приема / передачи пар].

Дифференциальный контакты [Дорожки], приведенные в таблице выводов выше LVDS которая расшифровывается как: дифференциальный сигнал низкого напряжения.

PCI-Express 1x контактов разъема

Прикрепите Сторона B Разъем Боковой разъем
# Название Описание Название Описание
1 +12 V +12 Вольт Зад № 1 Горячий плагин обнаружит присутствие
2 +12 V +12 Вольт +12 V +12 Вольт
3 RSVD Зарезервированный +12 V +12 Вольт
4 GND Земля GND Земля
5 SMCLK SMBus часы JTAG2 TCK
6 SMDAT SMBus данные JTAG3 TDI
7 GND Земля JTAG4 TDO
8 3,3 V 3,3 вольт JTAG5 TMS
9 JTAG1 + TRST # 3,3 V 3,3 вольт
10 3.3Vaux 3,3 вольт 3,3 V 3,3 вольт
11 WAKE # Ссылка реактивации PWRGD Питание исправно
Механический ключ
12 RSVD Зарезервированный GND Земля
13 GND Земля REFCLK + Ссылка часы
Дифференциальная пара
14 HSOP (0) Передатчик Lane 0,
Дифференциальная пара
REFCLK-
15 HSOn (0) GND Земля
16 GND Земля HSIP (0) Приемник Lane 0,
Дифференциальная пара
17 Зад # 2 Hotplug обнаружить Синь (0)
18 GND Земля GND Земля

PCI-Express 4x контактов разъема

Прикрепите Сторона B Разъем Боковой разъем
# Название Описание Название Описание
1 +12 V +12 Вольт Зад № 1 Горячий плагин обнаружит присутствие
2 +12 V +12 Вольт +12 V +12 Вольт
3 RSVD Зарезервированный +12 V +12 Вольт
4 GND Земля GND Земля
5 SMCLK SMBus часы JTAG2 TCK
6 SMDAT SMBus данные JTAG3 TDI
7 GND Земля JTAG4 TDO
8 3,3 V 3,3 вольт JTAG5 TMS
9 JTAG1 + TRST # 3,3 V 3,3 вольт
10 3.3Vaux 3,3 вольт 3,3 V 3,3 вольт
11 WAKE # Ссылка реактивации PWRGD Питание исправно
Механический ключ
12 RSVD Зарезервированный GND Земля
13 GND Земля REFCLK + Ссылка часы
Дифференциальная пара
14 HSOP (0) Передатчик Lane 0,
Дифференциальная пара
REFCLK-
15 HSOn (0) GND Земля
16 GND Земля HSIP (0) Приемник Lane 0,
Дифференциальная пара
17 Зад # 2 Hotplug обнаружить Синь (0)
18 GND Земля GND Земля
19 HSOP (1) Передатчик Lane 1,
Дифференциальная пара
RSVD Зарезервированный
20 HSOn (1) GND Земля
21 GND Земля HSIP (1) Приемник Lane 1,
Дифференциальная пара
22 GND Земля Синь (1)
23 HSOP (2) Передатчик Lane 2,
Дифференциальная пара
GND Земля
24 HSOn (2) GND Земля
25 GND Земля HSIP (2) Приемник Lane 2,
Дифференциальная пара
26 GND Земля Синь (2)
27 HSOP (3) Передатчик переулок, дом 3,
Дифференциальная пара
GND Земля
28 HSOn (3) GND Земля
29 GND Земля HSIP (3) Приемник переулок, дом 3,
Дифференциальная пара
30 RSVD Зарезервированный Синь (3)
31 Зад # 2 Распознавание оперативного подключения GND Земля
32 GND Земля RSVD Зарезервированный

PCI-Express 8x контактов разъема

Прикрепите Сторона B Разъем Боковой разъем
# Название Описание Название Описание
1 +12 V +12 Вольт Зад № 1 Горячий плагин обнаружит присутствие
2 +12 V +12 Вольт +12 V +12 Вольт
3 RSVD Зарезервированный +12 V +12 Вольт
4 GND Земля GND Земля
5 SMCLK SMBus часы JTAG2 TCK
6 SMDAT SMBus данные JTAG3 TDI
7 GND Земля JTAG4 TDO
8 3,3 V 3,3 вольт JTAG5 TMS
9 JTAG1 + TRST # 3,3 V 3,3 вольт
10 3.3Vaux 3,3 вольт 3,3 V 3,3 вольт
11 WAKE # Ссылка реактивации PWRGD Питание исправно
Механический ключ
12 RSVD Зарезервированный GND Земля
13 GND Земля REFCLK + Ссылка часы
Дифференциальная пара
14 HSOP (0) Передатчик Lane 0,
Дифференциальная пара
REFCLK-
15 HSOn (0) GND Земля
16 GND Земля HSIP (0) Приемник Lane 0,
Дифференциальная пара
17 Зад # 2 Hotplug обнаружить Синь (0)
18 GND Земля GND Земля
19 HSOP (1) Передатчик Lane 1,
Дифференциальная пара
RSVD Зарезервированный
20 HSOn (1) GND Земля
21 GND Земля HSIP (1) Приемник Lane 1,
Дифференциальная пара
22 GND Земля Синь (1)
23 HSOP (2) Передатчик Lane 2,
Дифференциальная пара
GND Земля
24 HSOn (2) GND Земля
25 GND Земля HSIP (2) Приемник Lane 2,
Дифференциальная пара
26 GND Земля Синь (2)
27 HSOP (3) Передатчик переулок, дом 3,
Дифференциальная пара
GND Земля
28 HSOn (3) GND Земля
29 GND Земля HSIP (3) Приемник переулок, дом 3,
Дифференциальная пара
30 RSVD Зарезервированный Синь (3)
31 Зад # 2 Распознавание оперативного подключения GND Земля
32 GND Земля RSVD Зарезервированный
33 HSOP (4) Передатчик дорожка 4,
Дифференциальная пара
RSVD Зарезервированный
34 HSOn (4) GND Земля
35 GND Земля HSIP (4) Приемник переулок, 4,
Дифференциальная пара
36 GND Земля Синь (4)
37 HSOP (5) Передатчик Lane 5,
Дифференциальная пара
GND Земля
38 HSOn (5) GND Земля
39 GND Земля HSIP (5) Приемник Lane 5,
Дифференциальная пара
40 GND Земля Синь (5)
41 HSOP (6) Передатчик Lane 6,
Дифференциальная пара
GND Земля
42 HSOn (6) GND Земля
43 GND Земля HSIP (6) Приемник Lane 6,
Дифференциальная пара
44 GND Земля Синь (6)
45 HSOP (7) Передатчик Полоса 7,
Дифференциальная пара
GND Земля
46 HSOn (7) GND Земля
47 GND Земля HSIP (7) Приемник Lane 7,
Дифференциальная пара
48 Зад # 2 Распознавание оперативного подключения Синь (7)
49 GND Земля GND Земля

PCI-Express 16x контактов разъема

Прикрепите Сторона B Разъем Боковой разъем
# Название Описание Название Описание
1 +12 V +12 Вольт Зад № 1 Горячий плагин обнаружит присутствие
2 +12 V +12 Вольт +12 V +12 Вольт
3 RSVD Зарезервированный +12 V +12 Вольт
4 GND Земля GND Земля
5 SMCLK SMBus часы JTAG2 TCK
6 SMDAT SMBus данные JTAG3 TDI
7 GND Земля JTAG4 TDO
8 3,3 V 3,3 вольт JTAG5 TMS
9 JTAG1 + TRST # 3,3 V 3,3 вольт
10 3.3Vaux 3,3 вольт 3,3 V 3,3 вольт
11 WAKE # Ссылка реактивации PWRGD Питание исправно
Механический ключ
12 RSVD Зарезервированный GND Земля
13 GND Земля REFCLK + Ссылка часы
Дифференциальная пара
14 HSOP (0) Передатчик Lane 0,
Дифференциальная пара
REFCLK-
15 HSOn (0) GND Земля
16 GND Земля HSIP (0) Приемник Lane 0,
Дифференциальная пара
17 Зад # 2 Hotplug обнаружить Синь (0)
18 GND Земля GND Земля
19 HSOP (1) Передатчик Lane 1,
Дифференциальная пара
RSVD Зарезервированный
20 HSOn (1) GND Земля
21 GND Земля HSIP (1) Приемник Lane 1,
Дифференциальная пара
22 GND Земля Синь (1)
23 HSOP (2) Передатчик Lane 2,
Дифференциальная пара
GND Земля
24 HSOn (2) GND Земля
25 GND Земля HSIP (2) Приемник Lane 2,
Дифференциальная пара
26 GND Земля Синь (2)
27 HSOP (3) Передатчик переулок, дом 3,
Дифференциальная пара
GND Земля
28 HSOn (3) GND Земля
29 GND Земля HSIP (3) Приемник переулок, дом 3,
Дифференциальная пара
30 RSVD Зарезервированный Синь (3)
31 Зад # 2 Распознавание оперативного подключения GND Земля
32 GND Земля RSVD Зарезервированный
33 HSOP (4) Передатчик дорожка 4,
Дифференциальная пара
RSVD Зарезервированный
34 HSOn (4) GND Земля
35 GND Земля HSIP (4) Приемник переулок, 4,
Дифференциальная пара
36 GND Земля Синь (4)
37 HSOP (5) Передатчик Lane 5,
Дифференциальная пара
GND Земля
38 HSOn (5) GND Земля
39 GND Земля HSIP (5) Приемник Lane 5,
Дифференциальная пара
40 GND Земля Синь (5)
41 HSOP (6) Передатчик Lane 6,
Дифференциальная пара
GND Земля
42 HSOn (6) GND Земля
43 GND Земля HSIP (6) Приемник Lane 6,
Дифференциальная пара
44 GND Земля Синь (6)
45 HSOP (7) Передатчик Полоса 7,
Дифференциальная пара
GND Земля
46 HSOn (7) GND Земля
47 GND Земля HSIP (7) Приемник Lane 7,
Дифференциальная пара
48 Зад # 2 Распознавание оперативного подключения Синь (7)
49 GND Земля GND Земля
50 HSOP (8) Передатчик Lane 8,
Дифференциальная пара
RSVD Зарезервированный
51 HSOn (8) GND Земля
52 GND Земля HSIP (8) Приемник Lane 8,
Дифференциальная пара
53 GND Земля Синь (8)
54 HSOP (9) Передатчик Lane 9,
Дифференциальная пара
GND Земля
55 HSOn (9) GND Земля
56 GND Земля HSIP (9) Приемник Lane 9,
Дифференциальная пара
57 GND Земля Синь (9)
58 HSOP (10) Передатчик Lane 10,
Дифференциальная пара
GND Земля
59 HSOn (10) GND Земля
60 GND Земля HSIP (10) Приемник Lane 10,
Дифференциальная пара
61 GND Земля Синь (10)
62 HSOP (11) Передатчик Lane 11,
Дифференциальная пара
GND Земля
63 HSOn (11) GND Земля
64 GND Земля HSIP (11) Приемник Lane 11,
Дифференциальная пара
65 GND Земля Синь (11)
66 HSOP (12) Передатчик, д. 12,
Дифференциальная пара
GND Земля
67 HSOn (12) GND Земля
68 GND Земля HSIP (12) Приемник, д. 12,
Дифференциальная пара
69 GND Земля Синь (12)
70 HSOP (13) Передатчик Lane 13,
Дифференциальная пара
GND Земля
71 HSOn (13) GND Земля
72 GND Земля HSIP (13) Приемник Lane 13,
Дифференциальная пара
73 GND Земля Синь (13)
74 HSOP (14) Передатчик Lane 14,
Дифференциальная пара
GND Земля
75 HSOn (14) GND Земля
76 GND Земля HSIP (14) Приемник Lane 14,
Дифференциальная пара
77 GND Земля Син (14)
78 HSOP (15) Передатчик Lane 15,
Дифференциальная пара
GND Земля
79 HSOn (15) GND Земля
80 GND Земля HSIP (15) Приемник Lane 15,
Дифференциальная пара
81 Зад # 2 Горячие настоящее плагин обнаружит Синь (15)
82 RSVD № 2 Распознавание оперативного подключения GND Земля

raspinovca.ru

PCI Express 2.0 vs PCI Express 3.0 vs PCI Express 4.0

        Шина PCI Express уже очень давно используется в современных ПК, и присутствует практически в каждом стационарном ПК. Обычно в нее подключаются, видеокарты, а также различные звуковые карты, скоростные накопители данных. Но сегодня речь пойдет именно о шине PCI Express x16, внешний вид которой изображен на превью к этому материалу (красный разъем с обрамлением).

        Такой разъем присутствует на всех материнских платах в том или или ином виде, может быть любого цвета, но чаще черного или синего, а также в более дорогих моделях может оснащаться подсветкой и обрамляться алюминиевыми вставками.

      С каждым новым поколением материнских плат, процессоров и чипсетов разрабатываются и новые спецификации на разъемы PCI Express, самым новым на сегодняшний день является PCI Express 4.0, характеристики которого уже известны и доступны разработчикам материнских плат. То есть в следующем году уже можно будет ждать новые материнские платы с этим интерфейсом. Технологический прогресс это конечно хорошо, но давайте разберемся в чем отличие в каждом поколении таких разъемах.

     Так как звуковые карты и остальная переферия может работать в любом типе порта и любой версии то в данной статье мы такие вещи рассматривать не будем. А рассмотрим совместимость видеокарт и версий PCI Express.

      Для начала определимся, что видеокарты нужно устанавливать только в PCI Express x16 и при этом в самый верхний разъем, т.е. котоырый ближе всего к процессору. Да, через специальные адаптеры можно установить видеокарту в PCI Express x1 или x4, и она даже будет работать, но из за серьезных ограничений пропускной способности x1 или x4, видеокарта будет работать очень медленно практически в любой современной игре.

Почему видеокарту нужно вствлять в верхний слот?

      т.е. самый ближний к процессору? Все дело в том, что именно самый верхний разъем распаян на плате полностью и все его линии напрямую подключены к процессору. Но ведь во многих даже бюджетных материнских платах бывает 2 и более разъема x16. Все дело в том, что 2 и так далее раземы не имеют полного подключения всех линий. Т.е. даже если физически вы видите что на плате установлены 3 разъема PCI Express x16, то толко первый из них будет подключен всеми линиями к процессору, а второй и 3 физически будут PCI Express x8, хотя выглядят как PCI Express x16.

Для чего это сделано?

      Это сделано для подлючения нескольких графических адаптеров, то есть, например, если вы подключаете 2 видеокарты то первый слот PCI Express x16 автоматический переключается в режим PCI Express x8, и второй слот становиться PCI Express x8. Все эти манипуляции автоматически выполняет материнская плата, пользователю переключать ничего не нужно. 

Различные версии разъемов PCI Express

      Каждые несколько лет производители выпускают новую версию разъема PCI Express, каждая вервия в 2 раза быстрее предыдущей. Наглядно это можно представить графиком ниже:

      По вертикали расположена пропускная способоность шины, а по горизонтали год выпуска. В настоящее время в большинстве материнских плат установлены интерфейсы PCI Express 2.0 и PCI Express 3.0.

      Эти интерфейсы имеют обрантую совместимость, т.е. видеокарта с интерфейсом PCI Express 2.0 заработает на материнской плате с PCI Express 3.0 и PCI Express 1.0, но во втором случае ее производительность упреться в потолок пропускной способности PCI Express 1.0. 

      Тоже самое можно скахать и про материнские платы, если на материской плате установлен PCI Express 3.0, то на ней заработает любая видеокарта с интерфейсом такипм же или ниже.

      В теории все это звучит конечно очень красиво, обратная совместимость и все прочее, но на практике как обычно бывают проблемы…

      Часто бывают случа, что например видеокарта с PCI Express 3.0 не запускалась на материских платах с PCI Express 2.0 или PCI Express 1.0. Тоже самое в обратную сторону бывает и с материнскими платами. От таких случаях никт оне застрахован, и узнать вы это сможете только после тестирования конкретно вашей материнской платы и видеокарты.

      Чтобы было понятнее ответим на некоторые вопросы пользователей

Можно ли покупать новую видеокарту с PCI Express 3.0 в материскую плату с PCI Express 1.0?

      Можно, только если это начальные модели видеокарт т.е. недорогие, которые не сильно производительны и им не потребуются все возможности шины PCI Express 3.0. Если хотите купить мощную видеокарту, но у вас старая материнская плата с интерфейсом PCI Express 1.0, то рекомендуем сначало обновить материнскую плату, а з тем уже ипокупать новую видекарту. Так как видеокарта просто не сможет раскрыться на 100% из-за ограничений старого интерефейса.

Можно ли вставлять видеокарту с PCI Express 3.0 в материскую плату с PCI Express 2.0 или подобное?

      Можно, но со 100% вроятность сказать что это будет работать нельзя. С точки зрения теории и в больштнстве случае все работает, но бывают и проблемы которые нельзя выявить заранее.

Падает ли производительность видеокарты с PCI Express 3.0, вставленной в слот  PCI Express 2.0?

      Ответ на этот вопрос разделим на 2 варианта: более старые игры, скажем до 2015 года и более новые 2016-2018 года.

      Так как пропускная способность PCI Express 3.0 выше таковой у PCI Express 2.0 в 2 раза то в новых играх вы действительно получите прирост производительности, но только если у вас мощная видеокарта, которая сможет использовать ресурсы PCI Express 3.0. А в старых играх разница между этими интерфейсами будет очень мала 1-3%, так как они не требуют передавать такой огромнй объем данных, и следовательно им будет хватать и старого интерефейса. 

Будет ли материнская плата с PCI Express 3.0 работать с видеокартой PCI Express 2.0?

      Будет и прекрасно, совместимость -1 одно поколение всегда работает хорошо, и ваша видеокарта будет работать на 100% без каких либо проблем или снижений скорости со стороны материнской платы.

Будет ли материнская плата с PCI Express 4.0 работать с видеокартой PCI Express 2.0 или PCI Express 3.0?

      Будет. Однозначно можно ответить что все видеокарты с PCI Express 3.0 будут работать на материнских платах с интерфейсом PCI Express 4.0. А вот видеокарты с PCI Express 2.0 уже могут и не заработать, это уже завист от производителя карты и биоса материнской платы.

Будет ли видеокарта с PCI Express 1.0 работать на материнке с PCI Express 3.0?

      Возможно будет, возможно нет, зависит от разработчика материнкой платы, насколько он озаботился поддержкой старых устройств. Онозначный ответ дать нельязя, это тот случай где нужно пробывать.


  • Решение проблем MBR, BOOTMRG PBR, BOOT PART в WinNTSetup

    Вперёд >

pc-insider.ru

Ставим вторую видеокарту в разъём PCI-Express x1 / Habr

Если в компьютере имеются 2 видеовыхода и захотелось подключить 3 монитора, то с некоторой вероятностью сделать это просто добавлением второй видеокарты не удастся — не все материнские платы имеют 2 разъёма PCI Express X16, а в многочисленные разъёмы PCI Express X1 видеокарты обычного размера не встанут из-за несовместимости по разъёму. Не все знают, что на самом деле установка длинного разъёма X16 в короткий слот возможна, поэтому не обязательно для 3-го монитора покупать другую и более дорогую материнскую плату. Способам расширения потенциальных возможностей компьютера посвящена эта статья, а также она развеивает сомнения и опасения о том, что что-то при доработке платы напильником не получится. Час работы — и 3-й монитор к Вашей системе будет подключен.

Проблема установки 2 видеокарт существует из-за того, что большинство слотов PCI-Express x1 имеют пластмассовый бортик на конце, дальнем от стенки корпуса компьютера, а видеокарты не имеют прорези для совместимости с бортиком. Как показывается ниже, проблема решается простым прорезанием этого бортика.

Для чего это может понадобиться?

1) Для установки 3-го монитора в систему.

Существуют, конечно, решения с 3-м монитором без хирургических операций с разъёмами.
1.1) Купить материнскую плату бюджетного типа с видеоразъёмом, установленным на плате. Внимание! Нужно быть уверенным, что BIOS платы не отключает автоматически встроенное видео, если видит установленную видеокарту. Для некоторых, особенно, бюджетных плат, такое решение встречается. Как убедиться в неотключении встроенного видео? Скорее всего, только опытом установки (видеокарты и 2 видеодрайверов), потому что в инструкциях к плате об этом могут не написать. (Например, я когда-то подключал для проверки 3 монитора к бюджетной плате Intel (на G31), но бюджетные платы Gigabyte с 2 слотами для ОЗУ имели функцию автоматического отключения встроенной графики.)
(рис.1)
1.2) Купить видеокарту с разъёмом PCI-Express x1. Таких видеокарт немного, но они есть. news.softportal.com/nitem-5729.html, www.oszone.net/print/9646, www.oszone.net/11230/Club3D_PCIe_x1_Radeon_HD_4350.
(рис. 2)
1.3) Купить материнскую плату с 2 или более разъёмами PCI-Express x16 (многие платы не нижней ценовой категории).
(рис. 3)
1.4) Отрезать лишний текстолит от видеокарты, как, например, здесь:
www.invisiblerobot.com/pcie_x1
(рис. 4)
(в какой-то степени шутка — зачем портить видеокарту, но здесь тоже так делали:
www.overclockers.ru/hardnews/22289.shtml )
1.5) Сильно не заморачиваться, а купить матплату, на которой стоит побольше PCI-Express x16-разъёмов:
(рис. 5)
(ещё большая шутка).

Все способы предполагают материальные затраты и более ограниченный выбор вариантов конфигурации. Если уже имеется плата со свободным слотом PCI-Express x1 и видеокарта с разъёмом PCI-Express x16, проще поступить так, как описано ниже.

Способ 1.6) Сделать прорезь на любом разъёме PCIe X1, удобном для установки видеокарты.
(рис. 6)

Спецификация требует включения линий питания и заземления карты расширения, даже если используется меньшее количество соединений. Поэтому, теоретически, после подключения мы можем получить проблемы из-за неполного подключения к питанию, но на практике их нет, потому что все линии питания на видеокарте просто объединяются в одну, а на маломощных видеокартах (не выше 3850) токи питания и частоты не настолько велики, чтобы это было критично. (Для решения проблемы есть адаптер uk.startech.com/product/PEX1TO16-PCI-Express-x1-to-Low-Profile-x16-Slot-Extension-Adapter, но он не понадобится.) По крайней мере, можно так надеяться, а более мощные видеокарты уже нет оснований так включать, потому что для них начинает сказываться ограниченная пропускная способность шины (в конце статьи — ссылка, дающая ответ на вопрос, видеокарту какой мощности разумно ставить в PCIe X1, а если в 2 словах, то ничего не теряем для видеокарт уровня GF8600GT/ATI 2600XT). Да и карта становится тяжёлой, что опасно для целостности такого небольшого разъёма.

UPD 2.10.2010 13:25 Читатели в комментариях напомнили ещё несколько способов подключения 3-го монитора, от известных древних до новых.
1.7) Купить видеокарту PCI. Так подключали мониторы во времена AGP и ранее. Такие карты существуют не только очень старые — есть инициативные производители, выпускающие их сейчас на современных чипах (обычно с фантастическими ценами):
www.3dnews.ru/news/audio_videokarta_asus_pod_shinu_pci_s_podderzhkoi_hdmi_1_3a
www.newegg.com/Product/Product.aspx?Item=N82E16814131082
www3.pny.com/8400-GS-512MB-PCI-Low-Profile-P2679C269.aspx
www.thg.ru/technews/20070820_110407.html
Исключение: как указал читатель Silent forest, нельзя добиться результата, если PCI-карта и PCI-Express-карта будет от одной и той же фирмы VNidia из-за банальной неподдержки драйвера для старой карты NVidia одновременно с новой (установка ATI PCI-Express разрешила конфликт).
1.8) Купить адаптер USB 2.0 to VGA (цены тоже довольно сильно кусаются, не менее 40$ — продукция ведь не массовая, выпускается некрупными партиями, с высокой долей себестоимости разработки):
www.nix.ru/autocatalog/adapters_switches/STLab_U470_USB_to_VGA_Adapter_88604.html
www.nextag.com/Startech-USB2VGAE2-USB-To-669150066/prices-html
(Наверное, есть проблемы с драйверами под немассовые операционные системы.)
1.9) Воспользоваться технологией ATI Eyefinity (для 3-го монитора требуется адаптер DisplayPort и видеокарта с поддержкой Eyefinity — Radeon 5xxx (чип RV870) и, разумеется, третий монитор с разъёмом DisplayPort) — для тех, кто хочет поддержать материально развитие инновационных технологий 🙂
www.amd.com/ru/products/technologies/eyefinity/Pages/eyefinity.aspx
www.nix.ru/computer_hardware_news/hardware_news_viewer.html?id=159707&page=10

2) Для подключения видеокарт в режиме Crossfire.

Строго говоря, для этого режима предусмотрены специальные материнские платы. Но, возможно, решение будет работать и с любой парой разъёмов PCIe (не проверялось).

Процесс доработки разъёма.

Перед работой убедитесь, что на материнской плате действительно будет свободное место для установки свободно висящего «хвоста» разъёма PCI-Express x16. Могут быть детали (конденсаторы, другие разъёмы), которые, в лучшем случае, удастся перепаять, разместив в другом положении.

Прорезание стенки достаточно просто, но требует соблюдения нескольких технических моментов в плане аккуратности операции.
1) материнскую плату лучше вынуть из корпуса, так как неосторожным движением можно повредить целостность разъёма или окружающих деталей;
2) прорезание выполнять так, чтобы не треснула пластмасса разъёма в основании. Поэтому, не использовать кусачки, резать острым скальпелем или лезвием для строительного ножа, соскабливая мелкими кусками или дремелем (машинкой для боров с установленной циркулярной пилой или наждачным диском), но осторожно, чтобы не повредить контакты. Нарушение целостности пластмассы тоже может привести к раздвиганию контактов, ненадёжному соединению.
3) срезая кусочки пластмассы острым ножом, следует быть очень осторожным, чтобы не срезать пружинящие контакты, которые находятся буквально в миллиметре от места операции. Если резать неострым ножом, на процедуру уходит времени 25-30 минут, а контакты, вероятнее, оказываются более защищены тем, что неострое лезвие их не перережет. На практике, у меня один контакт отогнулся вовнутрь, в пространство для текстолита карты, но затем его удалось подогнуть обратно.
4) пластмассу срезать до уровня дна разъёма; на фото показан процесс последовательного выскабливания стенки разъёма до нужной глубины:
(рис. 7)
5) перед установкой видеокарты внимательно проверить, что контакты не загнуты вовнутрь и видеокарта их не повредит.
6) при установке видеокарты — проверить, не прикоснётся ли оголённый разъём видеокарты проводящих поверхностей (радиаторы, детали). Если есть такая опасность, изолировать разъём или поверхности хотя бы скотчем или толстой бумагой, прикреплённой к карте.
(рис. 8)

7) После установки 2-й видеокарты — закрепить её за корпус, так как точка крепления за один маленький разъём PCIe довольно опасна для целостности самого разъёма.

На практике, я игнорировал рекомендацию (1), потому что места для работ внутри корпуса хватало и пользовался неострым б/у-лезвием. Стружки изнутри разъёма выдувал через трубку от шариковой ручки (использование офисных инструментов).
(рис. 9)
Столь незначительный набор инструментов (лезвие, трубка, возможно — скотч) и около часа времени на установку — небольшая плата за возможность подключения 3-го монитора. Может быть, он окажется лишним, но проверить удобство работы с ним и без него лишним не будет.
(рис. 10)

Пример процесса прорезания стенки разъёма, заснятый на видео, используя нагретое лезвие кухонного ножа: www.youtube.com/watch?v=gVBD-M_STsc (другой автор; на ютубе видео выложено 19.10.2009).
(рис. 11)
Такой способ тоже приведёт к результату, даже быстрее минут на 10, но «холодный» способ удобнее тем, что пластмасса не деформируется и не понадобится счищать наплывы, приводя к презентабельному виду.

Другой пример решения через удлинитель-переходник PCI Express x1 на PCI Express x16 — в статье автора SilentF people.overclockers.ru/SilentF/record4.
(UPD 2017-10: ссылка стала недоступной, но есть ещё одна — как сделать такой переходник самостоятельно, припаивая шлейф проводов)
(рис. 10a)
Здесь же решён вопрос, нерешение которого может привести к незапуску видеокарты: соединён контакт PRSNT #2 на конце разъёма PCIe x16 с таким же сигналом на разъёме PCIe x1. Он отвечает за определение «полноценной воткнутости» карты в слот: при неполностью вставленной карте определённый бит PRSNT (Piin-based Presence Detector) аппаратного регистра говорит «0» — «не вставлена». Если на видеокарте эти линии не замкнуты, без этой доработки регистр так и будет отмечать: «не вставлена», а что на основаниии него решит система — можем проверить. В любом случае, отсутствие сигнала не должно приводить к нестабильной работе: он влияет на этот аппаратный бит, а переход из 0 в 1 ещё создаёт аппаратное прерывание (hot plug карты расширения — «вставка во время работы»). Что оно делает в системе, заблокировано ли (по идее, должно, т.к. в компьютере PCIe — не «hot-plug» разъём) — тоже не известно, но опыт показывает, что без перемычки видеокарта 8300GS в PCIe x1 работает. (Если будет подозрение на некорректную работу вследствие PRSNT #2, можно сделать перемычку тонким проводом прямо на видеокарте.)

Установка 3-го монитора в системе (Windows XP)

При включении компьютера на вторую карту видеосигнал сначала не подаётся, дисплей сообщает о неподключённом кабеле. Операционная система без проблем обнаруживает видеокарту и подключает драйвер, если это карта того же производителя, что и первая, ранее установленная. WinXP просит перезапустить себя после автоустановки драйвера без каких-либо специальных действий для этого. После перезапуска система стала видеть монитор на второй видеокарте, а монитор обнаружил подключение кабеля.
(рис. 12)
(Интересно, что 2-й монитор на 1-й видеокарте пронумеровался в системе третьим.)

После активации монитора в свойствах дисплея (возможно, потребуется запуск мастера подключения мониторов, зависит от драйвера) на нём появляется фон рабочего стола.
(рис. 13)
Остаётся настроить разрешение и частоту подключения. При установке монитора ЭЛТ не забываем установить частоту развёртки не менее 70 Гц, чтобы не пользоваться 60 Гц по умолчанию. Для LCD-мониторов такое действие не нужно.
(рис. 14)
Если производители чипов (NVidia, ATI, Matrox) разные, нужно установить второй драйвер — обычно, по отзывам из других статей, они уживаются вместе (UPD: по подсказке Jeditobe и подтверждению guessss_who, Windows Vista не поддерживает одновременно драйверы разных производителей видеокарт. XP и Win7 этим не страдают.). В настройках дисплея из системы подключается нужное количество дополнительных мониторов. Результат:

(рис. 15)

В других статьях были неоднократные измерения производительности видеокарт на разъёме PCI-Express x1, в которых показано, что все видеокарты уровня ниже ATI 3850 / GF 9800 в любых режимах и играх ведут себя практически одинаково по сравнению с разъёмом PCI-Express x16 — им хватает предельного потока данных через 1 канал PCI-Express, равного 250 Мбайт/с в одну сторону (500 Мбайт/с в обе).

Приведём статью, в которой рассматривается падение производительности на 15-20% в тестах на ATI 3850 при PCIе x1, х4, х8, х16.
www.tomshardware.com/reviews/pci-express-2.0,1915-9.html
На GF 9800 GX2:
www.tomshardware.com/reviews/pci-express-2.0,1915-10.html
Статья большая; на разных страницах описано, каким образом ставились опыты.

Выводы

Если для видеокарты не стоят игровые задачи или она маломощная, то решение на PCIе x1 почти не будет уступать другим решениям с более дорогой материнской платой (кроме некоторых очень требовательных приложений наподобие Microsoft Flight Simulator, Crysis, Call Of Duty 4).

habr.com

PCI Express 1x, 4x, 8x, 16x bus распиновка и описание @ pinouts.ru

PCI Express as a high-bandwidth, low pin count, serial, interconnect technology. It was designed to replace the older PCI and AGPbus standards. PCIe has numerous improvements over the older standards, including higher maximum system bus throughput, lower I/O pin count and smaller physical footprint, better performance scaling for bus devices, a more detailed error detection and reporting mechanism (Advanced Error Reporting, AER), and native hot-swap functionality. PCI Express architecture provides a high performance I/O infrastructure for Desktop Platforms with transfer rates starting at 2.5 Giga transfers per second over a x1 PCI Express lane for Gigabit Ethernet, TV Tuners, Firewire 1394a/b controllers, and general purpose I/O. PCI Express architecture provides a high performance graphics infrastructure for Desktop Platforms doubling the capability of existing AGP8x designs with transfer rates of 4.0 Gigabytes per second over a x16 PCI Express lane for graphics controllers. A lane is composed of two differential signaling pairs, with one pair for receiving data and the other for transmitting.

ExpressCard utilizing PCI Express interface, developed by the PCMCIA group for mobile computers. PCI Express Advanced Power Management features help to extend platform battery life and to enable users to work anywhere, without an AC power source. The PCI Express electrical interface is also used in some computer storage interfaces SATA Express and M.2.

The broad adoption of PCI Express in the mobile, enterprise and communication segments enables convergence through the re-use of a common interconnect technology.

PCI-E is a serial bus which uses two low-voltage differential LVDS pairs, at 2.5Gb/s in each direction [one transmit, and one receive pair]. PCI Express supports 1x [2.5Gbps], 2x, 4x, 8x, 12x, 16x, and 32x bus widths [transmit / receive pairs].

The differential pins [Lanes] listed in the pin out table above are LVDS which stands for: Low Voltage Differential Signaling.

PCI-Express 1x Connector Pin-Out

Pin

Side B Connector

Side A Connector

# Name Description Name Description
1 +12v +12 volt power PRSNT#1 Hot plug presence detect
2 +12v +12 volt power +12v +12 volt power
3 +12v +12 volt power +12v +12 volt power
4 GND Ground GND Ground
5 SMCLK SMBus clock JTAG2 TCK
6 SMDAT SMBus data JTAG3 TDI
7 GND Ground JTAG4 TDO
8 +3.3v +3.3 volt power JTAG5 TMS
9 JTAG1 +TRST# +3.3v +3.3 volt power
10 3.3Vaux 3.3v volt power +3.3v +3.3 volt power
11 WAKE# Link Reactivation PWRGD Power Good

Mechanical Key

12 RSVD Reserved GND Ground
13 GND Ground REFCLK+ Reference Clock
Differential pair
14 HSOp(0) Transmitter Lane 0,
Differential pair
REFCLK-
15 HSOn(0) GND Ground
16 GND Ground HSIp(0) Receiver Lane 0,
Differential pair
17 PRSNT#2 Hotplug detect HSIn(0)
18 GND Ground GND Ground

PCI-Express 4x Connector Pin-Out

Pin

Side B Connector

Side A Connector

# Name Description Name Description
1 +12v +12 volt power PRSNT#1 Hot plug presence detect
2 +12v +12 volt power +12v +12 volt power
3 +12v +12 volt power +12v +12 volt power
4 GND Ground GND Ground
5 SMCLK SMBus clock JTAG2 TCK
6 SMDAT SMBus data JTAG3 TDI
7 GND Ground JTAG4 TDO
8 +3.3v +3.3 volt power JTAG5 TMS
9 JTAG1 +TRST# +3.3v +3.3 volt power
10 3.3Vaux 3.3v volt power +3.3v +3.3 volt power
11 WAKE# Link Reactivation PWRGD Power Good

Mechanical Key

12 RSVD Reserved GND Ground
13 GND Ground REFCLK+ Reference Clock
Differential pair
14 HSOp(0) Transmitter Lane 0,
Differential pair
REFCLK-
15 HSOn(0) GND Ground
16 GND Ground HSIp(0) Receiver Lane 0,
Differential pair
17 PRSNT#2 Hotplug detect HSIn(0)
18 GND Ground GND Ground
19 HSOp(1) Transmitter Lane 1,
Differential pair
RSVD Reserved
20 HSOn(1) GND Ground
21 GND Ground HSIp(1) Receiver Lane 1,
Differential pair
22 GND Ground HSIn(1)
23 HSOp(2) Transmitter Lane 2,
Differential pair
GND Ground
24 HSOn(2) GND Ground
25 GND Ground HSIp(2) Receiver Lane 2,
Differential pair
26 GND Ground HSIn(2)
27 HSOp(3) Transmitter Lane 3,
Differential pair
GND Ground
28 HSOn(3) GND Ground
29 GND Ground HSIp(3) Receiver Lane 3,
Differential pair
30 RSVD Reserved HSIn(3)
31 PRSNT#2 Hot plug detect GND Ground
32 GND Ground RSVD Reserved

PCI-Express 8x Connector Pin-Out

Pin

Side B Connector

Side A Connector

# Name Description Name Description
1 +12v +12 volt power PRSNT#1 Hot plug presence detect
2 +12v +12 volt power +12v +12 volt power
3 +12v +12 volt power +12v +12 volt power
4 GND Ground GND Ground
5 SMCLK SMBus clock JTAG2 TCK
6 SMDAT SMBus data JTAG3 TDI
7 GND Ground JTAG4 TDO
8 +3.3v +3.3 volt power JTAG5 TMS
9 JTAG1 +TRST# +3.3v +3.3 volt power
10 3.3Vaux 3.3v volt power +3.3v +3.3 volt power
11 WAKE# Link Reactivation PWRGD Power Good

Mechanical Keycard

12 RSVD Reserved GND Ground
13 GND Ground REFCLK+ Reference Clock
Differential pair
14 HSOp(0) Transmitter Lane 0,
Differential pair
REFCLK-
15 HSOn(0) GND Ground
16 GND Ground HSIp(0) Receiver Lane 0,
Differential pair
17 PRSNT#2 Hotplug detect HSIn(0)
18 GND Ground GND Ground
19 HSOp(1) Transmitter Lane 1,
Differential pair
RSVD Reserved
20 HSOn(1) GND Ground
21 GND Ground HSIp(1) Receiver Lane 1,
Differential pair
22 GND Ground HSIn(1)
23 HSOp(2) Transmitter Lane 2,
Differential pair
GND Ground
24 HSOn(2) GND Ground
25 GND Ground HSIp(2) Receiver Lane 2,
Differential pair
26 GND Ground HSIn(2)
27 HSOp(3) Transmitter Lane 3,
Differential pair
GND Ground
28 HSOn(3) GND Ground
29 GND Ground HSIp(3) Receiver Lane 3,
Differential pair
30 RSVD Reserved HSIn(3)
31 PRSNT#2 Hot plug detect GND Ground
32 GND Ground RSVD Reserved
33 HSOp(4) Transmitter Lane 4,
Differential pair
RSVD Reserved
34 HSOn(4) GND Ground
35 GND Ground HSIp(4) Receiver Lane 4,
Differential pair
36 GND Ground HSIn(4)
37 HSOp(5) Transmitter Lane 5,
Differential pair
GND Ground
38 HSOn(5) GND Ground
39 GND Ground HSIp(5) Receiver Lane 5,
Differential pair
40 GND Ground HSIn(5)
41 HSOp(6) Transmitter Lane 6,
Differential pair
GND Ground
42 HSOn(6) GND Ground
43 GND Ground HSIp(6) Receiver Lane 6,
Differential pair
44 GND Ground HSIn(6)
45 HSOp(7) Transmitter Lane 7,
Differential pair
GND Ground
46 HSOn(7) GND Ground
47 GND Ground HSIp(7) Receiver Lane 7,
Differential pair
48 PRSNT#2 Hot plug detect HSIn(7)
49 GND Ground GND Ground

PCI-Express 16x Connector Pin-Out

Pin

Side B Connector

Side A Connector

# Name Description Name Description
1 +12v +12 volt power PRSNT#1 Hot plug presence detect
2 +12v +12 volt power +12v +12 volt power
3 +12v +12 volt power +12v +12 volt power
4 GND Ground GND Ground
5 SMCLK SMBus clock JTAG2 TCK
6 SMDAT SMBus data JTAG3 TDI
7 GND Ground JTAG4 TDO
8 +3.3v +3.3 volt power JTAG5 TMS
9 JTAG1 +TRST# +3.3v +3.3 volt power
10 3.3Vaux 3.3v volt power +3.3v +3.3 volt power
11 WAKE# Link Reactivation PWRGD Power Good

Mechanical Key

12 RSVD Reserved GND Ground
13 GND Ground REFCLK+ Reference Clock
Differential pair
14 HSOp(0) Transmitter Lane 0,
Differential pair
REFCLK-
15 HSOn(0) GND Ground
16 GND Ground HSIp(0) Receiver Lane 0,
Differential pair
17 PRSNT#2 Hotplug detect HSIn(0)
18 GND Ground GND Ground
19 HSOp(1) Transmitter Lane 1,
Differential pair
RSVD Reserved
20 HSOn(1) GND Ground
21 GND Ground HSIp(1) Receiver Lane 1,
Differential pair
22 GND Ground HSIn(1)
23 HSOp(2) Transmitter Lane 2,
Differential pair
GND Ground
24 HSOn(2) GND Ground
25 GND Ground HSIp(2) Receiver Lane 2,
Differential pair
26 GND Ground HSIn(2)
27 HSOp(3) Transmitter Lane 3,
Differential pair
GND Ground
28 HSOn(3) GND Ground
29 GND Ground HSIp(3) Receiver Lane 3,
Differential pair
30 RSVD Reserved HSIn(3)
31 PRSNT#2 Hot plug detect GND Ground
32 GND Ground RSVD Reserved
33 HSOp(4) Transmitter Lane 4,
Differential pair
RSVD Reserved
34 HSOn(4) GND Ground
35 GND Ground HSIp(4) Receiver Lane 4,
Differential pair
36 GND Ground HSIn(4)
37 HSOp(5) Transmitter Lane 5,
Differential pair
GND Ground
38 HSOn(5) GND Ground
39 GND Ground HSIp(5) Receiver Lane 5,
Differential pair
40 GND Ground HSIn(5)
41 HSOp(6) Transmitter Lane 6,
Differential pair
GND Ground
42 HSOn(6) GND Ground
43 GND Ground HSIp(6) Receiver Lane 6,
Differential pair
44 GND Ground HSIn(6)
45 HSOp(7) Transmitter Lane 7,
Differential pair
GND Ground
46 HSOn(7) GND Ground
47 GND Ground HSIp(7) Receiver Lane 7,
Differential pair
48 PRSNT#2 Hot plug detect HSIn(7)
49 GND Ground GND Ground
50 HSOp(8) Transmitter Lane 8,
Differential pair
RSVD Reserved
51 HSOn(8) GND Ground
52 GND Ground HSIp(8) Receiver Lane 8,
Differential pair
53 GND Ground HSIn(8)
54 HSOp(9) Transmitter Lane 9,
Differential pair
GND Ground
55 HSOn(9) GND Ground
56 GND Ground HSIp(9) Receiver Lane 9,
Differential pair
57 GND Ground HSIn(9)
58 HSOp(10) Transmitter Lane 10,
Differential pair
GND Ground
59 HSOn(10) GND Ground
60 GND Ground HSIp(10) Receiver Lane 10,
Differential pair
61 GND Ground HSIn(10)
62 HSOp(11) Transmitter Lane 11,
Differential pair
GND Ground
63 HSOn(11) GND Ground
64 GND Ground HSIp(11) Receiver Lane 11,
Differential pair
65 GND Ground HSIn(11)
66 HSOp(12) Transmitter Lane 12,
Differential pair
GND Ground
67 HSOn(12) GND Ground
68 GND Ground HSIp(12) Receiver Lane 12,
Differential pair
69 GND Ground HSIn(12)
70 HSOp(13) Transmitter Lane 13,
Differential pair
GND Ground
71 HSOn(13) GND Ground
72 GND Ground HSIp(13) Receiver Lane 13,
Differential pair
73 GND Ground HSIn(13)
74 HSOp(14) Transmitter Lane 14,
Differential pair
GND Ground
75 HSOn(14) GND Ground
76 GND Ground HSIp(14) Receiver Lane 14,
Differential pair
77 GND Ground HSIn(14)
78 HSOp(15) Transmitter Lane 15,
Differential pair
GND Ground
79 HSOn(15) GND Ground
80 GND Ground HSIp(15) Receiver Lane 15,
Differential pair
81 PRSNT#2 Hot plug present detect HSIn(15)
82 RSVD#2 Hot Plug Detect GND Ground

 

PRSNT#1 is connected to GND on motherboard.
Add on card needs to have PRSNT#1 connected to one of PRSNT#2 depending what type of connector is in use.
 

PCI-express standards

PCI Express 1.0a

In 2003, PCI-SIG introduced PCIe 1.0a, with a per-lane data rate of 250 MB/s and a transfer rate of 2.5 gigatransfers per second (GT/s). Transfer rate is expressed in transfers per second instead of bits per second because the number of transfers includes the overhead bits, which do not provide additional throughput; PCIe 1.x uses an 8b/10b encoding scheme, resulting in a 20% (= 2/10) overhead on the raw channel bandwidth.

PCI Express 2.0

PCI-SIG announced the availability of the PCI Express Base 2.0 specification on 15 January 2007. The PCIe 2.0 standard doubles the transfer rate compared with PCIe 1.0 to 5 GT/s and the per-lane throughput rises from 250 MB/s to 500 MB/s. Consequently, a 32-lane PCIe connector (×32) can support an aggregate throughput of up to 16 GB/s. PCIe 2.0 motherboard slots are fully backward compatible with PCIe v1.x cards. PCIe 2.0 cards are also generally backward compatible with PCIe 1.x motherboards, using the available bandwidth of PCI Express 1.1. Overall, graphic cards or motherboards designed for v2.0 will work with the other being v1.1 or v1.0a.  Like 1.x, PCIe 2.0 uses an 8b/10b encoding scheme, therefore delivering, per-lane, an effective 4 Gbit/s max transfer rate from its 5 GT/s raw data rate.

PCI Express 2.1

PCI Express 2.1 (dated March 4, 2009) supports a large proportion of the management, support, and troubleshooting systems planned for full implementation in PCI Express 3.0. However, the speed is the same as PCI Express 2.0. The increase in power from the slot breaks backward compatibility between PCI Express 2.1 cards and some older motherboards with 1.0/1.0a, but most motherboards with PCI Express 1.1 connectors are provided with a BIOS update by their manufacturers through utilities to support backward compatibility of cards with PCIe 2.1.

PCI Express 3.0

PCI Express 3.0 specification was made available in November 2010. New features for the PCI Express 3.0 specification include a number of optimizations for enhanced signaling and data integrity, including transmitter and receiver equalization, PLL improvements, clock data recovery, and channel enhancements for currently supported topologies. PCI Express 3.0 upgrades the encoding scheme to 128b/130b from the previous 8b/10b encoding, reducing the bandwidth overhead from 20% of PCI Express 2.0 to approximately 1.54% (= 2/130). This is achieved by XORing a known binary polynomial as a scrambler to the data stream in a feedback topology. PCI Express 3.0’s 8 GT/s bit rate effectively delivers 985 MB/s per lane, nearly doubling the lane bandwidth relative to PCI Express 2.0.

PCI Express 4.0

PCI Express 4.0 was officially announced on 2017, providing a 16 GT/s bit rate that doubles the bandwidth provided by PCI Express 3.0, while maintaining backward and forward compatibility in both software support and used mechanical interface. PCI Express 4.0 specs will also bring OCuLink-2, an alternative to Thunderbolt connector. OCuLink version 2 will have up to 16 GT/s (8 GB/s total for ×4 lanes), while the maximum bandwidth of a Thunderbolt 3 connector is 5 GB/s. Additionally, active and idle power optimizations are to be investigated.

pinouts.ru

alexxlab

leave a Comment