Осциллограф своими руками, реально? Да! DSO138, осциллограф-конструктор

Недавно я уже делал обзор на один конструктор, сегодня продолжение небольшой серии обзоров о всяких самодельных вещах для начинающих радиолюбителей.
Скажу сразу, это конечно не Тектроникс, и даже не DS203, но по своему интересная штучка, хоть по сути и игрушка.
Обычно перед тестами сначала вещь разбирают, здесь сначала надо собрать 🙂

На мой взгляд, осциллограф это «глаза» радиолюбителя. Этот прибор редко обладает высокой точностью, в отличие от мультиметра, но позволяет увидеть процессы в динамике, т.е. в «движении».
Иногда такой секундный «взгляд» может помочь больше, чем день ковыряния с тестером.

Раньше осциллографы были ламповыми, потом их сменили транзисторные, но отображался результат все равно на экране ЭЛТ. Со временем на смену им пришли их цифровые собратья, маленькие, легкие, ну а логическим продолжением стало появление и конструктора для сборки такого прибора.
Несколько лет назад я на некоторых форумах встречал попытки (порой удачные) разработать самодельный осциллограф. Конструктор конечно проще их и слабее по техническим характеристикам, но могу сказать с уверенностью, собрать его сможет даже школьник.

Разработан этот конструктор фирмой jyetech. Страничка этого прибора на сайте производителя.

Возможно специалистам этот обзор покажется излишне подробным, но практика общения с начинающими радилюбителями показала, что они так лучше воспринимают информацию.

В общем обо всем я расскажу немного ниже, а пока стандартное вступление, распаковка.

Прислали конструктор в обычном пакетике с защелкой, правда двольно плотном.
Как по мне, то для такого набора очень не помешала бы красивая упаковка. Не с целью защиты от повреждений, а с целю внешней эстетики. Ведь вещь должна быить приятной уже даже на этапе распаковки, ведь это конструктор.

В пакете находилось:
Инструкция
Печатная плата
Кабель для подключения к измеряемым цепям
Два пакетика с компонентами
Дисплей.

Технические характиристики устройства очень скромные, как по мне это скорее обучающий набор, чем измерительный прибор, хотя и при помощи даже этого прибора можно проводить измерения, пусть и простые.

Также в комплект входит подробная цветная инструкция на двух листах.
В инструкции расписана последовательность сборки, калибровки и краткое руководство по использованию.
Единственный минус, это все на английском, но картинки сделаны понятно, потому даже в таком варианте большая часть будет понятна.
В инструкции даже обозначены позиционные места элементов и сделаны «чекбоксы», где надо ставить галочку после завершения определенного этапа. Очень продуманно.

Отдельным листом идет табличка со списком SMD компонентов.
Стоит отметить, что существует как минимум два варианта устройства. На первой исходно распаян только микроконтроллер, на втором распаяны все SMD компоненты.
Первый вариант рассчитан на чуть более опытных пользователей.
В моем обзоре учавствует именно такой вариант, о существовании второго варианта я узнал позже.

Печатная плата двухсторонняя, как и в прошлом обзоре, даже цвет тот же.

Сверху нанесена маска с обозначением элементов, одна часть элементов обозначена полностью, вторая имеет только позиционный номер по схеме.

С обратной стороны маркировки нет, есть только обозначение перемычек и наименование модели устройства.
Плата покрыта маской, причем маска очень прочная (невольно пришлось проверить), на мой взгляд то что надо именно для начинающих, так как тяжело что то повредить в процессе сборки.

Как я выше писал, на плату нанесены обозначения устанавливаемых элементов, маркировка четкая, претензий к этому пункту нет.

Все контакты имеют лужение, паяется плата очень легко, ну почти легко, об этом нюансе в разделе сборки 🙂

Как я выше писал, на плате предустановлен микроконтроллер STM32F103C8
Это 32 битный микроконтроллер, базирующийся на ARM 32-bit Cortex™-M3 ядре.
Максимальная частота работы 72МГц, также он имеет 2 x 12-bit, 1 μs АЦП.

С обоих сторон платы указана ее модель, DSO138.

Вернемся к перечислению комплектующих.
Мелкие радиодетали, разъемы и т.п. упакованы в небольшие пакетики с защелкой.

Высыпаем на стол содержимое большого пакета. Внутри находятся разъемы, стойки и электролитические конденсаторы. Также в пакете находятся еще два маленьких пакетика 🙂

Раскрыв все пакеты мы видим довольно много радиодеталей. Хотя с учетом того что это цифровой осциллограф, то я ожидал больше.
Приятно то, что SMD резисторы подписаны, хотя как по мне, не мешало бы подписать и обычные резисторы, или дать в комплекте небольшую памятку по цветовой маркировке.

Дислей упакован в мягкий материал, как оказалось, он не скользит, потому болтаться в пакете не будет, а печатная плата защищает его от повреждений при транспортировке.
Но все равно, я считаю что нормальная упаковка не помешала бы.

В устройстве применен 2.4 дюйма TFT LCD индикатор со светодиодной подсветкой.
Разрешение экрана 320х240 пикселей.

Также в комплект входит небольшой кабель. Для подключения к осциллографу применен стандартный BNC разъем, на втором конце кабеля пара «крокодилов».
Кабель средней мягкости, «крокодилы» довольно большие.

Ну и вид на весь набор в полностью разложенном виде.

Теперь можно перейти к собственно сборке данного конструктора, а заодно попробовать разобраться, на сколько это сложно.

В прошлый раз я начинал сборку с резисторов, как с самых низких элементов на плате.
При наличии SMD компонентов сборку лучше начать с них.
Для этого я разложил все SMD компоненты на прилагаемом листе с указанием их номинала и позиционного обозначения на схеме.

Когда приготовился уже паять, то подумал, что элементы в слишком мелком, для начинающего, корпусе, вполне можно было применить резисторы размером 1206 вместо 0805. Разница в занимаемом месте незначительна, но паять проще.

Вторая мысль была — вот потеряю сейчас резистор и не найду. Ладно я, открою стол и достану второй такой резистор, но не у всех есть такой выбор. В данном случае производитель позаботился об этом.
Всех резисторов (жалко что и не микросхем) дал на один больше, т.е. в запас, очень предусмотрительно, зачет.

Дальше я немного расскажу о том, как паяю такие компоненты я, и как советую делать другим, но это просто мое мнение, естественно каждый может делать по своему.
Иногда SMD компоненты паяют при помощи специальной пасты, но она нечасто есть у начинающего радиолюбителя (да и у неначинающего тоже), потому я покажу как проще работать без нее.
Берем пинцетом компонент, прикладываем к месту установки.

Вообще часто я сначала промазываю место установки компонента флюсом, это облегчает пайку, но усложняет промывку платы, вымыть флюс из под компонента иногда бывает сложно.

Поэтому я в данном случае использовал просто 1мм трубчатый припой с флюсом.
Придерживая компонент пинцетом, набираем на жало паяльника капельку припоя и припаиваем одну сторону компонента.
Не страшно если пайка получилась некрасивая или не очень прочная, на данном этапе достаточно того, что компонент держится сам.
Затем повторяем операцию с остальными компонентами.
После того как мы таким образом закрепили все компоненты (или все компоненты одного номинала), можно спокойно припаять как надо, для этого поворачиваем плату так, чтобы уже припаянная сторона была слева и держа паяльник в правой руке (если вы правша), а припой в левой, проходим все незапаянные места. Если пайка второй стороны не устраивает, то поворачиваем плату на 180 градусов и аналогично пропаиваем другую сторону компонента.
Так получается проще и быстрее, чем запаивать каждый компонент индивидуально.

Здесь на фото видно несколько установленных резисторов, но пока припаянных только с одной стороны.

Микросхемы в SMD корпусе маркируются точно так же как в обычном, слева около метки (хотя обычно слева снизу если смотреть на маркировку) находится первый контакт, остальные считаются против часовой стрелки.

На фото место для установки микросхемы и пример, как она должна устанавливаться.

С микросхемами поступаем полностью аналогично примеру с резисторами.
Выставляем микросхему на площадках, припаиваем любой один вывод (лучше крайний), немного корректируем положение микросхемы (при необходимости) и запаиваем остальные контакты.
С микросхемой- стабилизатором можно поступить по разному, но я советую припаивать сначала лепесток, а потом контактные площадки, тогда микросхема точно будет ровно прилегать к плате.
Но никто не запрещает припаять сначала крайний вывод, а потом все остальные.

Все SMD компоненты установлены и припаяны, осталось несколько резисторов, по одному каждого номинала, откладываем их в пакетик, может когда нибудь пригодятся.

Переходим к монтажу обычных резисторов.

В прошлом обзоре я рассказывал немного о цветовой маркировке. В этот раз я скорее посоветую просто измерить сопротивление резисторов при помощи мультиметра.
Дело в том, что резисторы очень мелкие, а при таких размерах цветовая маркировка очень плохо читается (чем меньше площадь закрашенного участка, тем сложнее определить цвет).
Изначально я искал в инструкции список номиналов и позиционных обозначений, но не нашел, так как искал их в виде таблички, а уже после монтажа выяснилось, что они есть на картинках, причем с чекбоксами для отметки установленных позиций.
Из-за моей невнимательности мне пришлось сделать свою табличку, по которой я рядом разложил устанавливаемые компоненты.
Слева отдельно виден резистор, при составлении таблички он был лишним, потому я оставил его под конец.

С резисторами поступаем похожим образом как в прошлом обзоре, формуем выводы при помощи пинцета (либо специальной оправки) так, чтобы резистор легко становился на свое место.
Будье внимательны, позиционные обозначения компонетов на плате могут быть не только надписаны, а и ПОДписаны и это может сыграть с вами злую шутку, особенно если на плате присутствует много компонентов в один ряд.

Вот тут вылез небольшой минус печатной платы.
Дело в том, что отверстия под резисторы имеют очень большой диаметр, а так как монтаж относительно плотный, то я решил выводы загибать, но несильно и потому в таких отверстиях держатся они не очень хорошо.

Из-за того, что резисторы держались не очень хорошо, я рекомендую не набивать сразу все номиналы, а установить половину или треть, потом запаять их и установить остальные.
Не бойтесь сильно обкусывать выводы, двухсторонняя плата с металлизацией прощает такие вещи, всегда можно припаять резистор хоть сверху, чего не сделаешь при односторонней печатной плате.

Все, резисторы запаяны, переходим к конденсаторам.
Я поступил с ними также как с резисторами, разложив согласно табличке.
Кстати у меня все таки остался один лишний резистор, видимо случайно положили.

Несколько слов о маркировке.
Такие конденсаторы маркируются также как и резисторы.
Первые две цифры — число, третья цифра — количество нулей после числа.
Получившийся результат равен емкости в пикофарадах.
Но на этой плате есть конденсаторы, не попадающие под эту маркировку, это номиналы 1, 3 и 22пФ.
Они маркируются просто указанием емкости так как емкость меньше 100пФ, т.е. меньше трехзначного числа.

Сначала запаиваю мелкие конденсаторы согласно позиционным обозначениям (тот еще квест).

С конденсаторами емкостью 100нФ я немного ступил, не добавив их в табличку сразу, пришлось делать это потом от руки.

Выводы конденсаторов я также загибал не полностью, а примерно под 45 градусов, этого вполне достаточно чтобы компонент не выпал.
Кстати, на этом фото видно, что пятачки, соединенные с общим контактом платы, выполнены правильно, есть кольцевой промежуток для уменьшения теплоотдачи, это облегчает пайку таких мест.

Как то я немного расслабился на этой плате и вспомнил о дросселях и диодах уже после запаивания керамических конденсаторов, хотя лучше было их впаять перед ними.
Но особо ситуацию это не изменило, потому перейдем к ним.
В комплекте к плате дали три дросселя и два диода (1N4007 и 1N5815).

С диодами все ясно, место подписано, катод обозначен белой полосой на самом диоде и на плате, перепутать очень сложно.
С дросселями бывает немного сложнее, они иногда также имеют цветовую маркировку, благо в данном случае все три дросселя имеют один номинал 🙂

На плате дроссели обозначаются буквой L и волнистой линией.
На фото участок платы с запаянными дросселями и диодами.

В осциллографе применено два транзистора разной проводимости и две микросхемы стабилизаторы, на разную полярность. В связи с этим будьте внимательны при монтаже, так как обозначение 78L05 очень похоже на 79L05, но если поставить наоборот, то вы скорее всего поедете за новыми.
С транзисторами немного проще, хоть на плате и указана просто проводимость без указания типа транзистора, но тип транзистора и его позиционное обозначение можно без труда посмотреть по схеме или карте установки компонентов.
Выводы здесь формовать заметно тяжелее, так как отформовать надо все три вывода, лучше не спешить, чтобы не отломать выводы.

Формуются выводы одинаково, это упрощает задачу.
На плате положение транзисторов и стабилизаторов обозначено, но на всякий случай я сделал фото, как они должны быть установлены.

В комплекте был мощный (относительно) дроссель, который используется в преобразователе для получения отрицательной полярности и кварцевый резонатор.
Им выводы формовать не надо.

Теперь о кварцевом резонаторе, он изготовлен под частоту 8МГц, полярности также не имеет, но под него лучше подложить кусочек скотча, так как корпус у него металлический и он лежит на дорожках. Плата покрыла защитной маской, но я как то привык делать какую нибудь подложку в таких случаях, для безопасности.
не удивляйтесь, что я в начале указал что процессор имеет максимальную частоту 72МГц, а кварц стоит всего на 8, внутри процессора есть как делители частоты, так иногда и умножители, потому ядро вполне может работать например на частоте 8х8=64МГц.
Почему то на плате контакты дросселя имеют квадратную и круглую форму, хотя сам по себе дроссель — элемент неполярный, потому просто впаиваем его на место, выводы лучше не загибать.

В комплекте дали довольно много электролитических конденсаторов, все они имеют одинаковую емкость в 100мкФ и напряжение в 16 Вольт.
Их надо запаивать обязательно с соблюдением полярности иначе возможны пиротехнические эффекты 🙂
Длинный вывод конденсатора это плюсовой контакт. На плате присутствует маркировка полярности как около соответствующего вывода, так и рядом с кружком, отмечающим положение конденсатора, довольно удобно.
Отмечен плюсовой вывод. Иногда маркируют минусовой, в этом случае примерно половина кружочка заштриховывается. А еще есть такой производитель компьютерного железа как Асус, который заштриховывает плюсовую сторону, потому всегда надо быть внимательным.

Потихоньку мы подошли к довольно редкому компоненту, подстроечному конденсатору.
Это конденсатор, емкость которого можно изменять в небольших пределах, например 10-30пФ, обычно и емкость этих конденсаторов невелика, до 40-50пФ.
Вообще это элемент неполярный, т.е. формально не имеет значения как его впаивать, но иногда имеет значение как его впаивать.
Конденсатор содержит шлиц под отвертку (типа головки маленького винтика), который имеет электрическое соединение с одним из выводов. ТАк вот в данной схеме один вывод конденсатора подключен к общему проводнику платы, а второй к остальным элементам.
Чтобы было меньше влияние отвертки на параметры цепи, надо впаивать его так, чтобы вывод соединенный со шлицом соединялся с общим проводом платы.
На плате указана маркировка как впаивать, а дальше по ходу обзора будет и фотка, где это видно.

Кнопки и переключатели.
Ну здесь тяжело что то сделать неправильно, так как очень тяжело их вставить как нибудь не так 🙂
Скажу лишь, что выводы корпуса переключателей надо припаять к плате.
В случае переключателя это не просто добавит прочности, а и соединит корпус переключателя с общим контактом платы и корпус переключателя будет работать как экран от помех.

Разъемы.
Самая сложная часть в плане пайки. Сложная не точностью или малогабаритностью компонента, а наоборот, иногда место пайки тяжело прогреть, потому для BNC разъема лучше взять паяльник помощнее.

На фото можно увидеть —
Пайка BNC разъема, дополнительного разъема питания (единственный разъем здесь, который можно поставить наоборот) и USB разъема.

С индикатором, а вернее с разъемами для его подключения, вышла небольшая неприятность.
В комплекте забыли положить пару двойных контактов (пинов), они тут используются для закрепления стороны индикатора, обратной сигнальному разъему.

Но посмотрев на распиновку сигнального разъема я понял, что некоторые контакты можно запросто откусить и использовать вместо недостающих.
Я мог открыть ящик стола и достать оттуда такой разъем, но это было бы неинтересно и в какой то степени нечестно.

Запаиваем гнездовые (так называемые — мамы) части разъемов на плату.

На плате присутствует выход встроенного генератора 1КГц, он нам потом понадобится, хоть эти два контакта и соединяются друг с другом, но мы все равно впаиваем перемычку, она будет удобна для подключения «крокодила» сигнального кабеля.
Для перемычки удобно использовать обкушенный вывод электролитического конденсатора, они длинные и довольно жесткие.
Находится эта перемычка слева от разъема питания.

Также на плате присутствует пара важных перемычек.
Одну из них, под названием JP3 надо закоротить сразу, делается это при помощи капельки припоя.

Со второй перемычкой, немножко сложнее.
Сначала надо подключить мультиметр в режиме измерения напряжения в контрольной точке, находящейся над лепестком микросхемы-стабилизатора. Второй щуп подключается к любому контакту соединенному с общим контактом платы, например к USB разъему.
На плату подается питание и проверяется напряжение в контрольной точке, если все в порядке, то там должно быть около 3.3 Вольта.

После этого перемычка JP4, находящаяся чуть левее и ниже стабилизатора, также соединяется при помощи капли припоя.

На обратной стороне платы есть еще четыре перемычки, их трогать не надо, это технологические перемычки, для диагностики платы и перевода процессора в режим прошивки.

Возвращаемся к дисплею. Как я выше писал, мне пришлось откусить несколько контактных пар, чтобы применить их взамен отсутствующих.
Но при сборке я решил выкусить не крайние пары, а как бы из середины, а крайнюю запаять на место, так будет сложнее перепутать что то при установке.

Хоть на дисплее и наклеена защитная пленка, я бы рекомендовал при припаивании разъема накрыть экран куском бумаги, в таком случае капли флюса, который кипит при пайке, будут отлетать на бумагу, а не на экран.

Все, можно подавать питание и проверять 🙂
Кстати, один из диодов, который мы запаивали ранее, служит для защиты электроники от неправильного подключения питания, со стороны разработчика это полезный шаг, так как спалить плату неправильной полярностью можно в секунду.
На плате указано питание 9 Вольт, но при этом оговорен диапазон до 12 Вольт.
В тестах я пита плату от 12 Вольт блока питания, но попробовал и от двух последовательно соединенных литиевых аккумуляторов, разница была только в чуть меньшей яркости подсветки экрана, думаю что применив стабилизатор 5 Вольт с низким падением и убрав защитный диод (или подключив его параллельно питанию и установив предохранитель), можно вполне спокойно питать плату от двух литиевых аккумуляторов.
Как вариант, использовать преобразователь питания 3.7-5 Вольт.

Так как запуск платы прошел успешно, то перед настройкой плату лучше промыть.
Я пользуюсь ацетоном, хотя он запрещен к продаже, но есть небольшие запасы, как вариант еще использовали толуол, ну или в крайнем случае медицинский спирт.
Но плату надо промыть обязательно, целиком «купать» ее не надо, достаточно пройтись снизу ваткой.

Особое внимание надо уделить переключателям режимов работы и входному разъему.
Хоть частоты и не очень высокие, но паразитное сопротивление, которое дает флюс, может сделать плохое дело.

В конце ставим плату «на ноги», используя комплектные стойки, они конечно чуть меньше чем надо и немного болтаются, но все равно так удобнее, чем просто класть на стол, не говоря о том, что выводы деталей могут поцарапать крышку стола, ну и так ничего не попадает под плату и не закоротит ничего под ней.

Первая проверка от встроенного генератора, для этого подключаем «крокодил» с красным изолятором к перемычке около разъема питания, черный провод никуда подключать не надо.

Чуть не забыл, несколько слов о назначении переключателей и кнопок.
Слева расположены три трехпозиционных переключателя.
Верхний переключает режим работы входа.
Заземлен
Режим работы без учета постоянной составляющей, или АС, или режим работы с закрытым входом. Хорошо подходит для измерения переменного тока.
Режим работы с возможностью измерения постоянного тока, или режим работы с открытым входом. Позволяет проводить измерения с учетом постоянной составляющей напряжения.

Второй и третий переключатели позволяют выбрать масштаб по оси напряжения.
Если выбран 1 Вольт, то это означает, что в этом режиме размах в одну масштабную клетку экрана будет равен напряжению в 1 Вольт.
При этом средний переключатель позволяет выбрать напряжение, а нижний множитель, потому при помощи трех переключателей можно выбрать девять фиксированных уровней напряжения от 10мВ до 5 Вольт на клетку.

Справа расположены кнопки управления режимами развертки и режима работы.
Описание кнопок сверху вниз.
1. При коротком нажатии включает режим HOLD, т.е. фиксация показаний на дисплее. при длинном (более 3 секунд) включает или выключает режим цифрового вывода данных параметра сигнала, частоту, период, напряжения.
2. Кнопка увеличения выбранного параметра
3. Кнопка уменьшения выбранного параметра.
4. Кнопка перебора режимов работы.
Управление временем развертки, диапазон от 10мкс до 500сек.
Выбор режима работы триггера синхронизации, Авто, нормальный и ждущий.
Режим захвата сигнала синхронизации триггером, по фронту или тылу сигнала.
Выбор уровня напряжения захвата сигнала триггера синхронизации.
Прокрутка осциллограммы по горизонтали, позволяет просмотреть сигнал «за пределами экрана»
Установка позиции осциллограммы по вертикали, помогает при измерении напряжений сигнала и когда осциллограмма не влазит на экран…
Кнопка сброса, просто перезагрузка осциллографа, как выяснилось иногда бывает очень удобна.
Рядом с кнопкой есть зеленый светодиод, он моргает когда осциллограф синхронизировался.

Все режимы при выключении прибора запоминаются и включается он потом в том режиме, в котором его выключили.

Еще на плате есть разъем USB, но как я понял, он в этом варианте не используется, при подключении к компьютеру выдает что обнаружено неизвестное устройство.
Также есть контакты для перепрошивки устройства.

Все режимы, выбранные кнопками или переключателями, дублируются на экране осциллографа.

Версию ПО я не обновлял, так как стоит последняя на текущий момент 113-13801-042

Настройка прибора очень проста, помогает в этом встроенный генератор.
Скорее всего при подключении к встроенному генератору прямоугольных импульсов вы увидите следующую картину, вместо ровных прямоугольников будет либо «завал» угла верха/низа, вниз или вверх.

Корректируется это вращением подстроечных конденсаторов.
Конденсаторов два, в режиме 0.1 Вольта подстраиваем С4, в режиме 1 Вольт соответственно С6. В режиме 10мВ корректировка не производится.

Регулировкой необходимо добиться ровных прямоугольных импульсов на экране, как это показано на фотографии.

Я посмотрел этот сигнал другим осциллографом, на мой взгляд он достаточно «ровный» для калибровки данного осциллографа.

Хоть конденсаторы и установлены правильно, но даже в таком варианте небольшое влияние от металлической отвертки присутствует, пока удерживаем жало на регулируемом элементе, результат один, стоит убрать жало, результат чуть меняется.
В таком варианте либо подкручивать маленькими сдвигами, либо использовать пластмассовую (диэлектрическую) отвертку.
Мне такая отвертка досталась с какой то камерой Хиквижн.

С одной стороны у нее крестовое жало, причем срезанное, именно для таких конденсаторов, с другой — прямое.

Так как данный осциллограф больше прибор для изучения принципов работы, чем действительно полноценный прибор, то и проводить полноценное тестирование я не вижу смысла, хотя основные вещи покажу и проверю.
1. Совсем забыл, иногда при работе внизу экрана вылазит реклама производителя 🙂
2. Отображения цифровых значений параметра сигнала, подан сигнал от встроенного генератора прямоугольных импульсов.
3. Вот такой собственный шум входа осциллографа, в интернет я встречал упоминания об этом, а так же о том, что новая версия имеет меньший уровень шумов.
4. Для проверки, что это действительно шум аналоговой части, а не наводки, я перевел осциллограф в режим с закороченным входом.

1. Переключил время развертки в режим 500сек на деление, как по мне, ну это уж совсем для экстремалов.
2. Уровень входного сигнала можно менять от 10мВ на клетку
3. До 5 Вольт на клетку.
4. Прямоугольный сигнал частотой 10КГц с генератора осциллографа DS203.

1. Прямоугольный сигнал частотой 50КГц с генератора осциллографа DS203. Видно что на такой частоте сигнал уже сильно искажен. 100КГц подавать уже не имеет особого смысла.
2. Синусоидальный сигнал частотой 20КГц с генератора осциллографа DS203.
3. Сигнал треугольной формы частотой 20КГц с генератора осциллографа DS203.
4. Пилообразный сигнал частотой 20КГц с генератора осциллографа DS203.

Дальше я решил немного посмотреть как ведет себя прибор при работе с синусоидальным сигналом, поданным от аналогового генератора и сравнить его со своим DS203
1. Частота 1КГц
2. Частота 10КГц

1. Частота 100КГц, в конструкторе нельзя выбрать время развертки меньше 10мс, потому только так 🙁
2. А вот так может выглядеть синусоидальный сигнал частотой 20КГц, поданный с DS203, но в другом режиме входного делителя. Выше был скриншот такого сигнала, но поданный в положении делителя 1 Вольт х 1, здесь сигнал в режиме 0.1 Вольт х 5.
Ниже видно как выглядит этот сигнал при подаче на DS203

Сигнал 20КГц, поданный с аналогового генератора.

Сравнительное фото двух осциллографов, DSO138 и DS203. Оба подключены к аналоговому генератору синуса, частота 20КГц, на обоих осциллографах выставлен одинаковый режим работы.

Резюме.
Плюсы
Интересная обучающая конструкция
Качественно изготовленная печатная плата, прочное защитное покрытие.
Собрать конструктор под силу даже начинающему радиолюбителю.
Продуманная комплектация, порадовали запасные резисторы в комплекте.
В инструкции хорошо расписан процесс сборки.

Минусы
Небольшая частота входного сигнала.
Забыли положить в комплект пару контактов для крепления индикатора
Простенькая упаковка.

Мое мнение. Скажу коротко, был бы у меня в детстве такой конструктор, я был бы наверное очень счастлив, даже несмотря на его недостатки.
А если длинно, то конструктор приятно порадовал, я считаю его хорошей базой как в получении опыта сборки и наладки электронного устройства, так и в опыте работы с очень важным для радиолюбителя прибором — осциллографом. Пусть простым, пусть без памяти и с низкой частотой, но это куда лучше возни с аудиокартами.
Как серьезный прибор считать его конечно нельзя, но он таким и не позиционируется, а как конструктор, более чем.
Зачем я заказал этот конструктор? Да просто было интересно, ведь все мы любим игрушки 🙂

Надеюсь что обзор был интересен и полезен, жду предложений по поводу вариантов тестирования 🙂
Ну и как всегда, дополнительные материалы, прошивки, инструкции, исходники, схема, описание — скачать.
Как дополнение, схема отдельно.

Схема


Товар предоставлен для написания обзора магазином. Обзор опубликован в соответствии с п.18 Правил сайта.

mysku.ru

Допиллинг осциллографа DSO-138

Этот осциллограф, с позволения сказать, а вернее игрушку для детей-переростков, кто только не оборзел обозрел. Добавлю-ка и я свою каплю меда в эту бочку дегтя.
Покупался он потому как… Вообще-то никакой реальной причины не было, просто халява. Хотя для оправдания растрат семейного бюджета я могу для своей любимой придумать множество причин 🙂

Не прошло и трех недель с момента заказа, и даже факт заказа стал забываться, как заветный пакетик добрался до приюта убогого чухонца 🙂

Фотографию упаковки, извините, выкладывать не стану, хотя ее пришлось все-таки добыть из помойного ведра и сфотографировать, когда осознал, что банггуд возвращает часть денег тому, кто уличит его в продаже фейков. Чего только не сделаешь за десять-то евриков 🙂
Руки сразу зачесались — благо выходной был — и через 2-3 часа в руках была вот такая поделка:

Обнаружилось смещение нуля, для которого предусмотрена автоматическая корректировка, но по какой-то причине эта корректировка не запоминается в EEPROM, поэтому после каждого сброса надо делать ее снова. Нет, так не пойдет — лень-то вперед меня родилась, поэтому за неимением исходников паршивки прошивки, придется компенсировать подбором резистора R10:

После корректировки выглядит так (не фонтан, конечно, но сойдет):

Теперь этому чуду враждебной техники нужно бы сделать автономное питание. Первым кандидатом была брошенная у меня другом половинка от батарейки планшетника:

Долго думал… Минуты две 🙂 Решил все-таки обойтись классической 18650 добытой из дохлой батареи лаптопа. Так как напряжение явно маловато для осциллографа, без boost обойтись тяжело, вклеим его в уголок:

Ссылки где взять не даю, извините. Взял в шкафчике — как-то по случаю наделал их кучу, так и валяются. Но схемку приложу:

Самому делать, вообще-то, не обязательно — их китайцы барыжат за доллар пучок.
Для зарядки использована стандартная из дешевейших (или дешевейшая из стандартных) платка с ебея
Обошлась в доллар за пару, включая доставку.
Теперь осталось мелочь — затолкать все это хозяйство куда-нибудь. Что нам стоит дом построить — нарисуем, будем жить!

Нарисовали…
Первая примерка — со стриптизом:

Но жить не получилось — ползунки-переключатели с длинными насадками свободно переключаться отказались. Пришлось выбросить первую конструкцию.
Рисуем вторую — вид изнутри:

снаружи:

крышка:

Упаковываем клиента:

Уперевшись, додавливаем:

Кстати, тут видно керамику на 10 мелкофарад, которую я поставил параллельно блокировочным конденсатором, надеясь уменьшить шумовые выбросы. Надежды юношей питают — но не помогло.
Ну и теперь, встречайте героя во фраке:

Опять таки по причине наличия отсутствия исходников, пришлось ставить выносной вольтметр для батарейки:

Вещь, известное дело, дорогая, заграничная — чуть больше доллара на ебее, точно не помню.

Напоследок, поддерживая похвальную местную традицию — хозяйка нашего дома в котячестве:

PS.
1. Файлы stl положил сюда.
2. По просьбам трудящихся ссылка на супер-обзор-предшественник от kirich.

mysku.ru

Допиллинг осциллографа DSO-138

Этот осциллограф, с позволения сказать, а вернее игрушку для детей-переростков, кто только не оборзел обозрел. Добавлю-ка и я свою каплю меда в эту бочку дегтя.
Покупался он потому как… Вообще-то никакой реальной причины не было, просто халява. Хотя для оправдания растрат семейного бюджета я могу для своей любимой придумать множество причин 🙂

Не прошло и трех недель с момента заказа, и даже факт заказа стал забываться, как заветный пакетик добрался до приюта убогого чухонца 🙂

Фотографию упаковки, извините, выкладывать не стану, хотя ее пришлось все-таки добыть из помойного ведра и сфотографировать, когда осознал, что банггуд возвращает часть денег тому, кто уличит его в продаже фейков. Чего только не сделаешь за десять-то евриков 🙂
Руки сразу зачесались — благо выходной был — и через 2-3 часа в руках была вот такая поделка:

Обнаружилось смещение нуля, для которого предусмотрена автоматическая корректировка, но по какой-то причине эта корректировка не запоминается в EEPROM, поэтому после каждого сброса надо делать ее снова. Нет, так не пойдет — лень-то вперед меня родилась, поэтому за неимением исходников паршивки прошивки, придется компенсировать подбором резистора R10:

После корректировки выглядит так (не фонтан, конечно, но сойдет):

Теперь этому чуду враждебной техники нужно бы сделать автономное питание. Первым кандидатом была брошенная у меня другом половинка от батарейки планшетника:

Долго думал… Минуты две 🙂 Решил все-таки обойтись классической 18650 добытой из дохлой батареи лаптопа. Так как напряжение явно маловато для осциллографа, без boost обойтись тяжело, вклеим его в уголок:

Ссылки где взять не даю, извините. Взял в шкафчике — как-то по случаю наделал их куч

mysku.me

DSO138 Тест и практическое применение осциллографа-конструктора.

На сборке этого осциллографа-конструктора останавливаться не вижу смысла поскольку уважаемый kirich уже описал этот процесс во всех деталях
mysku.ru/blog/china-stores/33799.html
Единственное что могу добавить, что все детали были в наличии и исправны, кроме одного керамического конденсатора с сильно заниженной ёмкостью.


87 вместо 100 нФ.

Осциллограф заработал сразу и без проблем. Также я стал обладателем обновлённой версии (13903K) с запаянными SMD деталями и последней на сегодняшний день прошивкой версии 60

Все кто знаком с DSO138 знают что заявленные производителем 200 кГц сильно завышены. Поэтому попробовал выяснить до какой частоты его показания будут «адекватными», без сильных искажений. Для этого теста мне удалось раздобыть генератор сигналов EFG-3210

Так как прямоугольный сигнал наиболее сложный для отображения осциллографом (из тех что я могу подать) то для теста будем использовать именно его.

Итак 1 кГц

10 кГц картина уже портится

22 кГц

31 кГц

41 кГц

50 кГц

61 кГц

70 кГц

80 кГц

100 кГц

200 кГц

Свыше примерно 200 кГц встроенный частотомер показывает показания «с потолка » сигнал на экране тоже «с потолка».

В общем по моему мнению приемлемую форму сигнала осциллограф DSO138 выдаёт максимум до 10-20 кГц, Как «показометр» его можно использовать и при 100-150 кГц.
Но и 20 кГц вполне хватит для многих «опытов!»
Например можно измерять частоту вращения прицепив фотоэлемент или датчик хола

Или строить графики изменения температуры, влажности, скорости… прикрепив соответствующий датчик.

Можно зафиксировать «моргание» ламп или фонариков подключив фотоэлемент.

Ну и конечно по назначению при небольших частотах


Модифицированная синусоида инвертора 12/220В


В итоге:
Отличная игрушка-осциллограф, хоть и заявленные скромные 200 кГц и завышены в 10 раз, но всё равно интересная и полезная. К покупке рекомендую.

mysku.ru

Маленький, простой осциллограф / Блог им. kirich / iXBT Live

Некоторое время назад в мои руки попал набор, позволяющий собрать простой осциллограф под наименованием DSO138. Все бы ничего, но у него был сильно ограничена частота измеряемого сигнала. Не скажу, что обозреваемый приборчик намного круче, но у него заявлена полоса пропускания до 4 МГц.
Посмотрим что это такое и как оно работает 🙂

Данный осциллограф изначально даже на странице продавца позиционируется как вариант для обучения, т.е. рассчитан на неподготовленного, начинающего пользователя, который сильно далек от управления более «навороченными» моделями и вполне может запутаться.

Для начала технические характеристики, сразу извиняюсь за местами кривой перевод.
Частота выборки: 20MSa / s
Аналоговая полоса пропускания: 4 МГц
Точность выборки: 8 бит
Размер кэша: 650 байт
Вертикальная чувствительность: 10 мВ / дел ~ 5 В / дел (прогрессивная на 1-2-5)
Горизонтальная скорость сканирования: 1.5us / div ~ 6ms / div (по 1-2-5 прогрессивным образом)
Дисплей: 2,4-дюймовый TFT 320X240 (чип драйвера ILI9325)
Входное сопротивление: 1MОм
Максимальное входное напряжение: 40Vpp (щуп 1: 1), 400Vpp (щуп 10: 1)
Входной сигнал: AC
Фиксация формы сигнала (функция HOLD)

Продается осциллограф в нескольких вариантах комплектации (цены ориентировочные со страницы товара):
1. Осциллограф + кабель питания USB — $17.40
2. Осциллограф + кабель питания + щуп — $20.09

Также можно купить отдельно:
3. Щуп 40 МГц — $2.69
4. Кабель BNC-BNC + BNC+ крокодилы — $1.74

Я заказал вариант номер два. В итоге получил два вот таких пакета.
Кстати, осциллограф заказывался у того же продавца, что и LCR-метр, потому стоимость доставки немного снизилась.

Так как стоимость доставки зависит от веса, то взвесил сначала комплект по п1, а потом полный вариант по п2.

Перейдем к осмотру, сначала комплектация.
В большом пакете лежал щуп, кабель питания и всякие мелочи. Пакет плотный с «клапаном», удобно в будущем хранить все дополнительное «хозяйство».

Кабель питания имеет на одном конце привычный USB штекер, а на втором круглый штекер диаметром 3.5мм.
Щуп самый обычный, кабель мягкий.

В комплекте была инструкция, прочитав которую я понял, что комплект все таки не совсем полный, не хватает специального контакта заземления в виде пружинки и четырех цветных колечек. Ну колечки это такое, можно и пережить, а вот дополнительный контакт жалко, мне бы очень пригодился 🙁

Щуп имеет встроенный делитель 1:10, с соответствующим переключателем. Земляной контакт одет в изоляцию, правда крокодил довольно «дубовый».
Выше я показал инструкцию, согласно ей мой щуп рассчитан на частоту до 40 МГц и напряжение до 600 Вольт. Сам же осциллограф имеет более скромные границы, потому здесь все с приличным запасом.

Щуп имеет возможность подстройки.
Для регулировки была также и отверточка, но она мне сильно пригодилась для работы с осциллографом, а не щупом. но следует учитывать, отвертка идет в комплекте к щупу, а не осциллографу. Кстати, цена щупа весьма низкая, как на мой взгляд, у нас в оффлайне они стоят куда дороже.

А вот и предмет обзора.
Внешне типичный кружок «умелые руки» в школе, простенький корпус, правда присутствует лазерная гравировка, а не банальные наклейки, впрочем это к делу не относится.

Сверху корпуса расположен цветной дисплей с диагональю 2.4 дюйма и разрешением 320х240. У моего DSO203 дисплей больше как размером, так и разрешением (400х240), хотя и ненамного.
Справа кнопки управления, причем управление предельно простое, здесь нет никаких меню, настроек и пр. Просто пять кнопок —
1, 2. Входное напряжение от 0.01 до 5 В на клетку. 9 ступеней.
3, 4. Развертка, от 1.5мкС до 6мС на клетку, 12 ступеней.
5. Кнопка Hold, просто фиксирует показания на дисплее. Как оказалось, самая используемая кнопка в некоторых ситуациях.

На верхнем торце корпуса расположили входной BNC разъем, а также выключатель и разъем питания.
К слову, потребление прибора составляет всего около 150мА, что делает возможным организовать его автономное питание, но так как прибор довольно чувствительный, то рекомендуется применить пару литиевых элементов и линейный стабилизатор напряжения с низким падением. В интернете искать по приставке — Low Drop.

Снизу отверстие для доступа к подстроечному резистору установки нуля.

Разбирается данная конструкция весьма просто, сначала выкручиваем четыре самореза снизу.

Затем четыре винта сверху и вынимаем плату. В корпусе просверлено отверстие для разъема, потому вынимать плату надо от отверстия.

Внутри можно увидеть плату осциллографа и довольно знакомый многим радиолюбителям дисплей. Если не путаю, то такой же дисплей применяется и в DSO138.

Дисплей удерживается только за счет фиксации в разъеме, сверху прижат корпусом, снизу приплавлены две пластмассовые стояки.

Вот печатная плата сделана весьма неплохо, около каждого элемента проставлен не только позиционный номер, а и номинал, что бывает крайне редко. Прямо «мечта ремонтника» 🙂 Снимал как-то видео, как определить номинал сгоревшего резистора, здесь бы такое не потребовалось.

Узел питания и входного операционного усилителя. Пайка довольно неплохая, но есть ощущение, что некоторые компоненты меняли после сборки, видны следы флюса.

Входные цепи и делители сигнала. К сожалению осциллограф умеет работать только с переменным током, впрочем для большинства задач этого более чем достаточно.
По входу стоит конденсатор 330нФ 250 Вольт.

Входной делитель. На плате 5 герконовых реле, делитель имеет 9 вариантов входного напряжения. Первые три реле работают в цепи первого ОУ, потом еще пара в цепи второго ОУ, получается 3х3=9 вариантов.

Резистор установки нуля. изначально осциллограф пришел с «уплывшим» нулем, установил, но практика показала, что ноль все таки любит иногда «поплавать», потому отверточка нужна довольно часто.

Элементы осциллографа:
1. Входной сдвоенный ОУ LM6172 с максимальной частотой в 100 МГц.
2. АЦП — ADS830E, максимальная частота в 60 МГц
3. Асинхронный буфер FIFO с временем доступа не более 12 нС.
4. Микроконтроллер Atmega16A, слева кварцевый резонатор 20 МГц.
5. Просто логическая микросхема
6. Преобразователь напряжения 7660, формирует отрицательный полюс 5 Вольт.
Еще на плате есть линейный стабилизатор напряжения 3.3 Вольта, он виден выше на фото.

Снизу пайка хоть и относительно качественная, но вот флюс, его много.

Кроме того, что на плате указаны номиналы компонентов, есть еще и принципиальная схема. Правда в варианте с другим питанием. Здесь за питание отвечает не 7660, а просто собран сетевой БП с двухполярным питанием.
К сожалению качество схемы немного подкачало, но что есть.
Виден входной аттенюатор, АЦП, буфер и микроконтроллер с дисплеем. Схемотехника проста как три копейки, но вполне неплохая для по сути игрушки.

Посмотрим более внимательно, на базе чего собран осциллограф.
Сразу после первого аттенюатора сигнал попадает на усилитель.
Применен довольно неплохой ОУ с частотой до 100 МГц, что при заявленных 4 МГц более чем с запасом.

Дальше неплохой 8 бит АЦП производства Burr-Brown с верхней частотой 60 МГц, что также с огромным запасом.
Интересно то, что у DS203, которым я пользуюсь, стоит хоть и сдвоенный АЦП, но имеющий только 40 Мегасемплов.

Буфер FIFO, насколько я понимаю, максимальная рабочая частота составляет порядка 80 МГц. Применена IDT7205. Похоже, что данная серия выпускается в военном исполнении.

А вот дальше выводом на экран сигнала, а также масштабной сетки и измерением частоты занимается Atmega16A.

Первым делом я сначала решил оценить уровень шумов. Вход не был закорочен, если закоротить, то на экране просто прямая линия.
Слева осциллограф просто лежит на столе, справа я приложил руку к корпусу около входного аттенюатора.

Не пугайтесь, на самом деле экран осциллографа выглядит куда красивее, все четко и контрастно.

Просто так как скриншоты осциллограф делать не умеет, то пришлось прибегнуть к «дедовскому способу».

Для начала в качестве генератора я использовал встроенный в мой привычный DS203.
Пила и треугольник 20 кГц, соответственно так как видит это обозреваемый и мой, вполне неплохо.

Синус и прямоугольник 20 кГц.
Синус совпадает, а вот у прямоугольника сильно завален передний фронт.

Предположу что выше генератор работал в режиме DDS, потому я повысил частоту выше 20кГц, так как в таком режиме точно работает именно генератор прямоугольных импульсов.
200 и 500 кГц. пожалуй я бы сказал что даже неплохо, если бы не то, что на одной осциллограмме завалено одно, на другой — другое. Такое впечатление, что изображение зеркальное. В обоих случаях использовался кабель от DS203, подключаясь поочередно на вход одного и другого осциллографа.

И тут я случайно увидел одну интересную особенность, возможно это ошибка в программе, возможно так задумано, но осциллограф позволяет заметно уменьшить время развертки, чем заявленные 1.5мкс на клетку.
Я начал переключать режимы развертки (они идут по кругу) и увеличив время смог растянуть сигнал.
Частотомер конечно начал показывать значение «от балды». 

Ладно, уже любопытно, подаем 1 МГц.

Слева 1.5мкс, справа «неправильный» растянутый режим.

Подадим 2 МГц.

Ну все думаю, «Бобик сдох», на экране ерунда, в первом режиме не рассмотреть, во втором почти треугольник.

Но я не сдаюсь и подам 4 МГц. Уже и на экране моего осциллографа нечто слабо напоминающее прямоугольник.

А на экране обозреваемого «зверька вообще мрак, но...
1. Исходный сигнал на самой короткой развертке, частотомер работает нормально, отображает поданные 4 МГц. Но на сигнал без слез не взглянешь.
2. Увеличиваем время развертки, как я делал выше, ну что, треугольник.
3. А давайте изменим входной аттенюатор с 1 В на клетку до 0.5 В. О, уже заметно лучше.
4. Ну а теперь еще растянем развертку. Даже на прямоугольник похоже 🙂

С другой стороны, выше 4 МГц никто собственно и не обещал.

Следующий эксперимент провел уже в этом режиме, кстати, встроенный частотомер при частоте в 6МГц уже начинает показывать ерунду. Но как оказалось, отображаемая на экране частота все равно кратна реальной частоте входного сигнала.
1. 6 МГц, на экране отображает как 2 кГц, т.е. в 3000 раз меньше.
2. 8 МГц, на экране 2.8 кГц, что также примерно в 3000 раз меньше чем 8 МГц.

Но ведь работает же. У меня создалось впечатление, что каким-то образом выводится не весь реальный сигнал, и сильно разделенный, т.е. из него „вынули“ большую часть и он приобрел вменяемый вид.
К сожалению мне особо нечем тестировать на высоких частотах.

Вообще, справедливости ради, сначала я пробовал проводить тесты с другим генератором сигналов.

И я бы не добавлял их в обзор, если бы не некоторые мелочи, которые я заметил в процессе.
Для начала сигнал 8 МГц в штатном виде и растянутый, как я делал выше.

Но если его растянуть еще больше, то он приобретает такой вид, возможно кому нибудь данная информация даст почву для размышлений.

А вот так выглядит треугольник и пила, поданная с этого генератора на обозреваемый осциллограф и мой основной.
Частота 65кГц.

Раз уж тестирую, то проверю как данный осциллограф работает с более реальными сигналами. Например осциллограмма из одного моего обзора блока питания. правда здесь использовался конденсатор параллельно щупу, как я делал в последних обзорах БП.

Тот же блок питания, примерно та же нагрузка, но с разными параметрами вывода сигнала.
Похоже? На мой взгляд да.

Возможно кому-то осциллограмма, которую я показал выше, покажется не очень наглядной, потому я подобрал один из блоков питания, где пульсации имеют более привычный вид.
Один и тот же блок питания, слева нагрузка 50%, справа 100%. В обоих случаях осциллограммы совпадают, причем на обозреваемом можно еще растянуть картинку в 2 или 4 раза.
Но при этом мой осциллограф работает при минимально возможных 50мВ на клетку, а у обозреваемого можно увеличить чувствительность еще в 5 раз, доведя до 10мВ на клетку. Правда обнаружился и небольшая „особенность“, у одного осциллографа размах пульсации получился больше, чем у другого. Кстати, у обозреваемого значение полного размаха отображается довольно корректно.

Групповое фото, DSO138, обозреваемый и DS203.

В качестве выводов могу сказать, что осциллограф приятно удивил и прежде всего весьма неплохой элементной базой и простотой схемного решения. В плане функционала он конечно проиграет даже DSO138, не говоря о DS203, но вот в плане характеристик он стоит на голову выше чем DSO138 и я бы сказал, что в чем-то он не сильно и хуже моего. Не стоит забывать, что в DS203 применен АЦП с максимальной частотой 40 МГц, а в обозреваемом 60 МГц.
Входной аттенюатор построен без хитрых коммутаторов, только лишь на базе самых простых реле, но данное решение работает.
Из минусов отмечу то, что режим входа только АС, а не AC/DC, как у DSO138 и DS203.
Зато из плюсов простейшее управление, которое к сожалению все равно добавило ложку дегтя в виде некоторых сложностей в работе встроенного триггера, отвечающего за удержание сигнала на экране. Именно про это я писал выше, когда речь шла о кнопке Hold. В некоторых ситуациях осциллограф не может удержать стабильно сигнал на экране и он начинает „дергаться“, при нажатии на кнопку Hold результат получается чаще всего нормальный, просто надо привыкнуть к этому.
Самая большая странность, прямоугольник на частоте 20кГц.

В остальном весьма интересный вариант для самых начинающих радиолюбителей, который прост в управлении и позволяет применить его и на практике, например при работе с блоками питания.
Кроме того, данный осциллограф продается в корпусе (это и преимущество и недостаток одновременно), а также имеет питание 5 Вольт. Я пробовал питать его от повербанка, работает отлично.

Видеовариант обзора — https://www.youtube.com/watch?v=pNcID30bFwo


Покупал через посредника yoybuy.com, стоимость комплекта около 22 долларов, стоимость доставки зависит от страны, в обзоре указан вес составных частей. Реферальная ссылкадля регистрации, насколько я помню, можно получить бонус 10 долларов от 50. Ссылка не моя, моих бонусов там нет 🙂

Ссылка на товар на сайте Таобао.


На этом у меня все, как всегда жду вопросов, надеюсь что обзор был полезен.

www.ixbt.com

JYE Tech DSO138 DIY Цифровой осциллограф с корпусом из прозрачного акрила

Осциллограф — Конструктор с прозрачным акриловым корпусом.

Нужность сего устройства обсуждать не буду. Все известны его недостатки, но при этом у осциллографа есть своя ниша — низкочастотные схемы, портативность. И просто удовольствие от самостоятельной сборки. Обзоры подобных осциллографов уже были неоднократно, поэтому маловероятно, что я напишу что-то новое.

Вот в таком виде, обмотанным еще 3 метрами пупырки приехал конструктор. Почему-то у самого осциллографа коробки нет, а там стеклянный экран.

Корпус

Сам осциллограф

Характеристики

Габариты платы: 117mm * 76mm
Размер экрана: 52mm * 40mm (2.4")
Процессор: ARM Cortex-M3 STM32F103C8
Напряжение питания: DC 9V
Полоса частот: 0 — 200KHz
Частота дискретизации:1Msps
Буфер измерений: 1024 байта
Чувствительность по вертикали: 10mV/деление — 5V/деление
Максимальное напряжение: 50V(щуп 1:1)
Разрешение по горизонтали: 10μs / деление — 50s / деление
генератор прямоугольных импульсов 1Hz /3.3V

Сборка

Изначально на плате распаян только микропроцессор. Обычному радиолюбителю без фена тяжело запаять такой корпус.

Обратная сторона платы. Плата сделана хорошо, надписи достаточно информативны. Некоторые отверстия я бы сделал на 0.1 мм поменьше.

Инструкция по сборке. Все детали и количество расписаны, есть место для пометок об установленных деталях. Порядок пайки расписали пошагово.
Все сжато и доходчиво. Если следовать инструкции проблем не возникнет.

Обратная сторона инструкции. Есть раздел по решению возникших проблем. У меня запустилось сразу, хотя одно проблемное место возникло.

Инструкция по первичной настройке, характеристики устройства. При настройке есть одно тонкое место — в качестве отвертки брать пластмассу или деревянную палочку — металлическая отвертка вносит сумасшедшие помехи.

схема устройства

Как паять детали. На рисунке видна микросхема TL084C. Вот эта зараза меня ввела в ступор. Нормальные микросхемы имеют на корпусе ключ-выемку. На этой же кроме надписи ничего не было. Запаял так, чтобы надпись начиналась от первой ножки. Лудим по одному контакту у smd деталей.

экран. Не забудьте снять защитную пленку

обратная сторона

детали. Почему-то выводные резисторы не в ленте.

разъемы, кнопки, переключатели, подстроечные конденсаторы

конденсаторы


smd резисторы — некоторые номиналы положили с избытком

Транзисторы, диоды и микросхемы

индуктивности, кварцевый резонатор и светодиод

лудил и паял вот таким припоем

smd детали прижимаете пинцетом, паяете одну сторону(фиксируем), потом у всех вторую сторону.

Разъемы питания и BNC разъем нужно паять мощным паяльником, деталь массивная, плохо греется.
Ушко из проволоки для выхода генератора лучше сделать побольше — в корпусе неудачный вырез для него.


первый запуск





Корпус собирается просто.

толкатели кнопок — в комплекте пару запасных

крепеж экрана

Смотрите внимательно — подчеркнул синим. Транзистор неровно запаял — не попал в отверстие крышки

верхняя часть корпуса с установленными толкателями



корпус в сборе

Сборка проблем не составляет, наладка простая и описана в документации. В целом конструктор оставил хорошее впечатление. Для полного счастья не хватает питания от батарей/аккумуляторов.

Товар предоставлен для написания обзора магазином. Обзор опубликован в соответствии с п.18 Правил сайта.

mysku.ru

Обзор и схема осциллографа JYE Tech DSO 150

JYE Tech уже почти 10 лет выпускает конструкторы для сборки измерительных приборов. DSO 150 — один из популярных продуктов: невысокая цена и наличие корпуса выгодно отличают его от других продуктов компании. В обзоре мы соберем прибор, переведем инструкцию по сборке на русский язык и проведем немного тестов. Для заинтересовавшихся — прошу под кат. Внимание, трафик!

Введение:


Я несколько лет занимаюсь радиолюбительством как хобби, и как у многих, чьё хобби не связано с основной работой — у меня нет доступа к профессиональному оборудованию, а именно — к осциллографу. Как любителя, меня отпугивает высокая цена на прибор, который будет мало использоваться.

Поэтому мне было интересно взять на обзор небольшой осциллограф DSO 15002K, чтобы понять — нужен ли мне более профессиональный прибор, и понять принцип работы осциллографа.

Технические характеристики:

Сразу скажу пару слов о том, что именно эту модель активно подделывают. Производитель даже отдельную страницу на своем форуме посвятил тому, как отличить оригинал от подделки:

Дополнительная информация


Мой прибор оригинальный. Подделка также отличается очень низкой ценой. Только на оригинале можно менять прошивки; подделки, судя по форумам, при попытке их обновить превращаются в кирпич (хотя есть способы откатиться к старой версии прошивки).

Про ценовую политику

Версия 15002k на бэнге стоит 32$, 15001k на бэнге стоит 21$ (с указанием, что это оригинал). В официальном магазине фирмы на али цены выше: 15001к — 39$, 15002к — 43$, полностью собранный — 49$.

Упаковка и комплектация:


Упаковка:

Прибор пришел в стандартном для банггуда черном пакете. На пакете была отдельная наклейка с надписью «Fragile» (Хрупкое).

Коробка с деталями была в несколько слоев обмотана вспененным материалом:

Я заказал версию DSO 15002K, которая отличается от DSO 15001K тем, что нужно помимо выводных компонентов на плату измерителей нужно установить и SMD детали. Кстати, у производителя появилась и версия, где все детали SMD, правда она продается полностью собранной, и стоит дороже.

Детали упакованы в картонную коробку, на которой есть наклейка-пломба:

Сверху видим комплектные щупы:

Платы упакованы в антистатический пакет:

Вот так выглядит весь набор:

Элементы корпуса крупным планом:

Платы:

Вы еще не заметили ничего необычного? Производитель ошибся и в версию 15002K положил плату analog board, на которую уже установлены все SMD детали, а не пустую плату. Ну и в довесок в пакете с деталями есть все необходимые SMD детали, которые будут теперь запасными.

Рассмотрим платы поближе:

Основная плата:

Analog board:

Детали

Производителю — плюс в карму: он положил по 1 запасному SMD резистору каждого номинала и 2 запасных SMD конденсатора. Электролитические конденсаторы используются фирмы Hliaeng.



Инструкция на английском

Небольшой спойлер: сразу после сборки прибор не заработал как надо. И пока я переписывался с техподдержкой, я перевел руководство по сборке, местами дополнив его. В некоторых местах перевод корявый, поэтому предложения по его совершенствованию только приветствуются. Из-за разницы форматирования из 4 страниц у меня получилось 18. Внизу страницы есть ссылка на архив, в котором эта инструкция размещена в формате .pdf.

Инструкция на русском

Принципиальная схема

Основная плата:

Analog board:

Приступим к сборке:


Инструкция советует сборку начать с проверки основной платы. Никаких деталей паять не нужно до того, как Вы убедитесь, что она работает, иначе лишитесь гарантии. Проверяем и видим такую картину:

Сразу же и оценим экран: обычный TFT 320х240, углы обзора неважные. На свету яркость и контрастность падает, в темноте смотрится нормально:

Едем дальше. Для пайки я использовал гель флюс, так как он потом легче смывается.

Сначала были припаяны все кнопки и контакт для тестового сигнала:


К ним добавились выключатель, колодка 1х5 и разъем внутреннего питания (который можно и не запаивать). Феном был удален резистор 30 для проверки работоспособности выключателя:

С основной платой разобрались, переходим к плате измерителей.

Нас лишили радости установки SMD компонентов, поэтому переходим сразу к выводным. Устанавливаем все резисторы. В инструкции я расписал их цветовую маркировку, но на всякий случай проверяем их тестером (да и быстрей это будет).

Ставим керамические конденсаторы: так как каждого только по 1 номиналу, перепутать что-либо невозможно. На всякий случай маркировку написал в инструкции.

Электролитических конденсаторов 3 штуки, и все одного номинала. Серой полосой отмечен минус на конденсаторе, на плате видим +. Главное не перепутать полярность. Дальше паяем разъемную колодку и переключатель. BNC разъем запаять чуть сложнее: нам нужен мощный паяльник (на 50-100 Вт.).

Переходим к самой маленькой плате — плате энкодера. Здесь главное установить энкодер на правильную сторону печатной платы. Ориентироваться можно по картинке.

Теперь смываем флюс изопропиловым спиртом со всех плат.

С экрана снимаем пленку, берем любую другую, вырезаем по размеру и клеим. С двустороннего скотча сзади экрана снимаем пленку, экран кладем на пластиковую переднюю панель в пазы, и сверху накрываем печатной платой.

Энкодер устанавливаем на основную плату, фиксируем комплектными винтами и припаиваемым его выводы.

Сверху устанавливаем analog board и переходим к проверке контрольных напряжений на точках. Переключатель переводим в положение GND.

Показания должны быть такими:

И здесь у меня случилась неприятность: большинство контрольных напряжений не совпало с целевыми значениями, о чем я сразу сообщил производителю. Естественно, прибор показывал «температуру с марса».

Переписка с производителем

Оказалось, что из-за питания от кроны и были проблемы. После замены батареек на питание с помощью блока питания 12 В. и понижающего адаптера контрольные напряжения приблизились к норме, и прибор ожил.

Дальше следует этап настройки переменных конденсаторов. Для этого подключаем комплектный щуп к BNC разъему, красный щуп подключаем к тестовому выводу прибора, который выдает 1 кГц. Нажимаем на энкодер на 3 секунды, и прибор переходит в режим подачи тестового сигнала. Путем вращения переменного конденсатора С3 стремимся придать прямоугольнику острые края. Должно получиться как-то так:

Аналогичным образом подстраиваем С5. На этом настройка закончена, и можно все собирать.

Прибор собирается просто, после того, как перевел инструкцию, все лишние вопросы по сборке отпали.

Прошивка в приборе версии 113-15001-064, а самая свежая, судя по сайту — 113-1501-110.

Результат:



У задней панельки было какое-то чувство незаконченности, решил заполнить пустое место:

Реальный вес прибора составил 92 грамма:

Про полосу частот

Из книги «Радиоэлектроника для чайников»:

Полоса частот и разрешающая способность осциллографа
Для того чтобы выбрать себе рабочий осциллограф, нужно знать хотя бы пару его важных характеристик. Одной из основных является так называемая полоса частот. Полосой частот осциллографа называется максимальная частота, сигнал с которой еще можно анализировать прибором (т.е. осциллографом), измеренная в мегагерцах. Осциллографы на базе ПК имеют наиболее низкую полосу частот — около 5-10 МГц. В принципе, такой полосы хватает для работы с большинством задач, включая радиолюбительство и даже сервисный ремоҥт видео- и аудиоаппаратуры.
Средняя полоса частот бюджетного настольного осциллографа составляет уже около 20-35 МГц. Этого диапазона с головой хватает для выполнения всех мало-мальски распространенных задач. Разве что специализированные задачи по поиску и устранению неисправностей в компьютерах и сверхвысокочастотных системах связи (СВЧ) могут потребовать частот, превышающих 100 МГц. Однако любое расширение полосы частот приводит к возрастанию стоимости измерительного прибора.

Тогда нужен ли этот набор? На мой взгляд, это отличное пособие для начинающих для того, чтобы понять принцип работы прибора. Это интересный и недорогой приборчик может выступить в качестве наглядного пособия на уроке физики в школе. Да и можно к нему прицепить фотоэлемент и фиксировать частоту мерцания светодиодных лампочек. Либо для измерения небольших частот, как-никак.

Итоги:


Достоинства:
— Низкая цена;
— Качественные печатные платы;
— Наличие заводского корпуса, ничего не нужно допиливать;
— Подробная инструкция (хотя русский пришлось «допиливать»).

Недостатки:
— Заявленная полоса частот сильно завышена;
— На корпусе нет защитного стекла для экрана (при перевозке в сумке экран можно повредить).

P.S. Переведенную инструкцию, последнюю прошивку, схемы сложил в архив.

Upd. от 12.03.2018:

Перепрошил на версию 111, вот как это выглядит:

Для начала запаиваем 2 перемычки на основной плате:

И впаиваем разъем для удобства:

Я прошивал с помощью адаптера на CP2102, т.к. адаптер на PL2303HX не видела программа.
Вот он в диспетчере устройств:

Далее Вам нужно запросить у китайцев по электронной почте код доступа:

Этапы прошивки

После успешной прошивки появится такой экран, куда с помощью поворотов и нажатия энкодера нужно ввести полученный код:

Результат:

Товар предоставлен для написания обзора магазином. Обзор опубликован в соответствии с п.18 Правил сайта.

mysku.ru

alexxlab

Отправить ответ

avatar
  Подписаться  
Уведомление о